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Abstract. We use 2019-2023 TROPOMI satellite observations of atmospheric methane to quantify global
methane emissions at monthly 2°x2.5° resolution with a localized ensemble transform Kalman filter
(LETKF) inversion, deriving monthly posterior estimates of emissions and year-to-year evolution. We
apply two alternative wetland inventories (WetCHARTSs and LPJ-wsl) as prior estimates. Our best
posterior estimate of global emissions shows a surge from 560 Tg a™! in 2019 to 587-592 Tg a™! in 2020-
2021 before declining to 572-570 Tg a™! in 2022-2023. Posterior emissions reproduce the observed 2019-
2023 trends in methane concentrations at NOAA surface sites and from TROPOMI with minimal regional
bias. Consistent with previous studies, we attribute the 2020-2021 methane surge to a 14 Tg a™! increase
in emissions from sub-Saharan Africa but find that previous attribution of this surge to anthropogenic
sources (livestock) reflects errors in the assumed wetland spatial distribution. Correlation with GRACE-
FO inundation data suggests that wetlands in South Sudan played a major role in the 2020-2021 surge but
are poorly represented in wetland models. By contrast, boreal wetland emissions decreased over 2020-
2023 consistent with drying measured by GRACE-FO. We find that the global seasonality of methane
emissions is driven by northern tropical wetlands and peaks in September, later than the July wetland
model peak and consistent with GRACE-FO. We find no global seasonality in oil/gas emissions, but US
fields show elevated cold season emissions that could reflect increased leakage.

Plain language summary. We use satellite observations of atmospheric methane, a potent greenhouse
gas, to calculate emissions from both human and natural sources. We find that methane emissions surged
in 2020 and 2021 before declining in 2022 and 2023. We attribute the surge in large part to emissions
from eastern Africa, which experienced large methane-generating floods. Wetland models greatly
underestimate emissions in that region, which has led some previous work to incorrectly attribute the
African surge in methane emissions to livestock.
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1 Introduction

Methane is a strong greenhouse gas, contributing 0.6 °C of warming from the pre-industrial baseline, with
a relatively short lifetime of about 9 years due principally to oxidation by the hydroxyl (OH) radical in
the troposphere (Prather et al., 2012; Naik et al., 2021). Methane is emitted by natural sources, mostly
wetlands, and by anthropogenic sources including enteric fermentation and manure from livestock, oil
and gas, coal mining, rice, landfills, and wastewater (Saunois et al., 2025). Decreasing methane emissions
is an effective way to mitigate climate change in the near-term while also achieving air quality co-benefits
from reduced tropospheric ozone (West et al., 2006; Nisbet et al., 2020). Bottom-up methane emission
inventories link emissions to processes (IPCC, 2019), but inventory construction typically lags by several
years behind real time and is subject to errors. Satellite observations of atmospheric methane can help
improve and update inventories through inverse analyses using Bayesian optimization and can offer
insights on recent and rapid changes (Jacob et al., 2016; Houweling et al., 2017; Jacob et al., 2022). Here
we apply a Localized Ensemble Transform Kalman Filter (LETKF) to TROPOspheric Monitoring
Instrument (TROPOMI) satellite observations of atmospheric methane for 2018-2023 to quantify
emissions on a monthly basis and attribute the causes of the methane increase.

Global methane concentrations increased at a rate of 6-10 ppb a™! prior to 2019, surging to 13-18
ppb a’! in 2020-2022 before returning to 10 ppb a! in 2023 (NOAA, 2024). The causes of the methane
surge are uncertain and have been variably attributed to wetlands or a decrease in OH (Qu et al., 2022;
Peng et al., 2022; Qu et al., 2024), with recent work favoring a wetland surge (Drinkwater et al., 2023;
Nisbet, 2023; Nisbet et al., 2023; Michel et al., 2024). Earlier increases have been attributed to emissions
increases from oil and gas, livestock, and wetlands, with changes in the '*C-CHj isotopic abundance
pointing towards a biogenic source (Hausmann et al., 2016; Zhang et al., 2021; Basu et al., 2022; Feng et
al., 2023; Zhang et al., 2024). Global daily observations from TROPOMI, launched in 2017 (Lorente et
al., 2021), provide a unique dataset to attribute methane trends including seasonal information.

LETKF (Hunt et al., 2007) uses an ensemble of chemical transport model (CTM) simulations of
methane concentrations over short successive assimilation time windows to relate emissions to
atmospheric concentrations. This ensemble approximates the background error covariance matrix which
represents the prior uncertainty in the system. LETKF has been used previously to analyze methane
emissions and their trends (Feng et al., 2017; Bisht et al., 2023; Zhu et al., 2022). It has advantages
compared to other inverse methods reviewed by Brasseur and Jacob (2017) in being far less
computationally expensive than analytical methods, not requiring a model adjoint like 4D-Var methods,
and not being restricted dimensionally like Markov chain Monte Carlo methods. The short assimilation
time window reduces the effect of errors in model transport (Yu et al., 2021) and in the seasonality of the
prior estimate (East et al., 2024).

Here we estimate global methane emissions at 2°x2.5° spatial resolution and monthly temporal
resolution from May 2018 through December 2023. We use the CHEEREIO platform (Pendergrass et al.,
2023) to apply LETKF to the TROPOMI data. CHEEREIO is a general user-friendly platform for LETKF
data assimilation powered by the GEOS-Chem CTM. We use the results to analyze seasonal and 2019-
2023 trends in methane emissions from different emission sectors.
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2 Data assimilation system

We use methane observations from TROPOMI (section 2.1) to optimize global methane emissions at
2°x2.5° resolution (section 2.2) with a LETKF algorithm (section 2.3) implemented through CHEEREIO
(section 2.4). We apply a downscaling approach to attribute emissions to different sectors at a finer scale
than the 2°%2.5° resolution of the inversion (section 2.5).

2.1 Observations

TROPOMI detects solar backscatter in the 2.3 pm methane absorption band with global daily coverage
at 5.5x7 km? nadir pixel resolution (7x7 km? before August 2019) and 13:30 local solar time. We use the
operational retrieval of dry-column methane mixing ratios (Xcy, ) from the Netherlands Institute for Space
Research (SRON) (Lorente et al., 2023), corrected for bias with a machine-learning algorithm trained on
collocated data from the more precise but much sparser GOSAT satellite instrument (Balasus et al., 2023;
obtained from https://registry.opendata.aws/blended-tropomi-gosat-methane. Last accessed: 27 Feb
2025).

We filter out retrievals over coastlines (fractional-water pixels) and oceans (glint retrievals),
which are subject to residual artifacts (Balasus et al. 2023). We also account for bias that could be
introduced by extended periods of missing TROPOMI data, caused by outages of the Visible Infrared
Imaging Radiometer Suite (VIIRS) which is used for cloud clearing (Borsdorff et al., 2024). Full
TROPOMI data records are available for 2019-2021, but in 2022 no TROPOMI data is available between
July 26 and August 23, and in 2023 retrievals begin to fail on July 26 and are fully missing between
August 10 and August 30. This is the time of year when northern hemispheric methane concentrations
are at their minimum but sharply rising because of wetland missions (East et al., 2024). In the absence of
observations, LETKF would persist July emissions through the period of missing data and increase
emissions suddenly when observations resume to correct a global bias. We account for this artifact in our
estimates of interannual variability by scaling to the seasonality of 2021 emissions as follows:

. Xyrvalid (1)
Xyr = X021
X2021,valid
Here xy, are annual posterior mean gridded emissions in yr € {2022,2023} after correction, Xy yaliq are

annual posterior mean emissions excluding the period of missing data, and X021 yalig are 2021 posterior
emissions excluding the same period. This assumes similar seasonal variations in the three years.
Observed methane concentrations from the NOAA global surface network (NOAA, 2024) show highly
reproducible seasonality from year to year (East et al., 2024). The global mean surface concentration in
July/August 2021 was 6 ppb below the 2021 annual mean, as compared with 5 ppb in 2022 and 7 ppb in
2023. When analyzing seasonality, we show either 2021 results or the 2019-2021 detrended mean
seasonality to avoid bias due to missing observations. We find that the LETKF corrects emissions for the
periods of missing data within two 5-day assimilation time windows after TROPOMI observations are
available again. There is no need for an extended “burn-in” period, which may be due to our run-in-place
methodology which efficiently makes use of available observations (section 2.4). Because we scale
emissions gridcell by gridcell, we implicitly account for different emission seasonalities in different
regions and latitude bands.
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2.2 GEOS-Chem, prior inventories, and prescribed methane sinks

GEOS-Chem is a three-dimensional CTM driven by assimilated meteorological data from the
Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) of the NASA
Global Modeling and Assimilation Office (GMAQO). We use the GEOS-Chem methane simulation
(Maasakkers et al., 2019) at 2.0°%2.5° resolution. We initialize all ensemble members in 2018 with a 33-
year GEOS-Chem simulation in which the methane field is controlled by time-varying gridded NOAA
surface methane observations that are used as the simulation’s lower boundary condition, thus properly
initializing the stratosphere (Mooring et al., 2024).

Prior methane emissions are listed in Table 1. Prior estimates of emissions and loss include no
trends over the study period (persisting 2019 values), so that any trends in the posterior solution are due
to observations. Anthropogenic emissions are assumed to be aseasonal, except for manure management
and rice for which we apply seasonal scaling factors (Maasakkers et al., 2016; Zhang et al., 2016a). For
wetland emissions, we conduct parallel inversions with prior estimates based on two alternative
inventories: the mean of the nine-member high-performance subset of the WetCHARTSs v1.3.1 inventory
ensemble (Bloometal., 2017; Maetal., 2021), and the Lund—Potsdam—Jena Wald Schnee und Landschaft
(LPJ-wsl) dynamic global vegetation model driven with assimilated meteorological data from MERRA-
2 (Zhang et al., 2016b). The latter inventory, which we denote LPJ-MERRA?2 in what follows, was found
by East et al. (2024) to uniquely match the observed global methane seasonality as compared to other
wetland emission inventories (East et al., 2024). As discussed later, many emission sources are co-located
making source attribution difficult, especially in eastern Africa where livestock and wetlands overlap
substantially.

Table 1. Global methane sources (Tg a!) for 2023
Prior estimate? Posterior best estimate®

Total 529-574 570
Anthropogenic 348 392
Livestock 121* 151
Oil+Gas 507 60
Coal 341 26
Rice 39% 36
Waste 81%* 92
Other 24%* 26
Natural 181-226 178
Wetlands 148-193 141
Termites 12 18
Fires 19 17
Seeps 2 2

Prior emissions include no trends over 2018-2023. Ranges are defined by the two alternative prior estimates for wetlands, both at 0.5°x0.5°
monthly resolution for 2019: lower value is WetCHARTs v1.3.1 (Ma et al., 2021) higher value is LPJ-wsl driven by MERRA-2 meteorology
(Zhang et al., 2016b). Prior non-fossil anthropogenic emissions are from the 2018 EDGARv6 inventory (Crippa et al., 2021), denoted *, and
fossil anthropogenic emissions are from the 2010-2019 Global Fuel Exploitation Inventory (GFEI) version 2.0 (Scarpelli et al., 2022),
denoted . All anthropogenic emissions are at 0.1°x0.1° resolution and are overwritten by national gridded emissions for the contiguous US
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(Maasakkers et al., 2016), Mexico (Scarpelli et al., 2020), and Canada (Scarpelli et al., 2021). Termite emissions (4°x5°) are from Fung et
al. (1991), fire emissions (0.25°x0.25°) are from the 2019 Global Fire Emissions Database (GFED4) (van der Werf et al., 2017), and
geological seeps (1°x1°) are from Etiope et al. (2019) with global scaling to the annual total from Hmiel et al. (2020).

bPosterior emissions for 2023 from the LETKF with sources attributed via downscaling. Best estimate represents the mean of LPJ-MERRA2
and WetCHARTS posterior estimates both with and without methane concentrations in the state vector.

Loss of methane from oxidation by tropospheric OH is computed with global 3-D monthly mean
OH fields from GEOS-Chem (Wecht et al., 2014), scaled so that methane’s steady-state lifetime due to
loss to tropospheric OH matches the best estimate of 11.2 years derived from methyl chloroform
observations (Prather et al., 2012; East et al., 2024). We assume no interannual variability in tropospheric
OH concentrations. Additional minor methane sinks in GEOS-Chem include oxidation by tropospheric
Cl (Wang et al., 2019), oxidation in the stratosphere (Mooring et al., 2024), and uptake by soils (Murguia-
Flores et al., 2018), resulting in an overall methane lifetime of 9.4 years.

We do not optimize tropospheric OH concentrations (as the main methane sink) because they do
not imprint local gradients of methane concentrations as needed for application of LETKF. Global
analytic inversions optimize OH concentrations independently of emissions by exploiting knowledge of
the global OH distribution (Zhang et al., 2018; Maasakers et al., 2019; Penn et al., 2025). Interannual
variability of OH concentrations may in fact contribute to interannual variability of methane
concentrations (Bouarar et al., 2021; Peng et al., 2022; Morgenstern et al., 2025), but emission changes
are more important (Feng et al., 2023; Qu et al., 2024; He et al., 2025).

2.3 The LETKEF algorithm

The LETKF algorithm optimizes a state vector of emissions, or of concatenated emissions and
concentrations, to minimize the Bayesian scalar cost function J(x) assuming Gaussian error probability
density functions (pdfs; Hunt et al., 2007; Brasseur and Jacob, 2017):

JO) = (x—x) (P (x — %) + y(y — H®) R~y — H(x)) )

Here x is the state vector to be optimized, x? is the prior estimate, P? is the background (also
called prior or forecast) error covariance matrix of the model prediction, y is the TROPOMI observations,
H (") is an observation operator that transforms the state vector x from the state space to the observation
space, R is the observational error covariance matrix, and y is a regularization constant to account for
unresolved error correlation in the observations and is taken to be 0.1 following Qu et al., (2024). x
includes gridded 2°x2.5° methane emission scaling factors over land excluding Antarctica (2737 state
vector elements) to be applied to the prior estimates. In additional inversion ensemble runs, we
simultaneously optimize methane concentrations along with emissions scaling factors (concatenating both
in the state vector x) to avoid systematically attributing discrepancies between observations and
background concentrations to errors in prior emissions.

In the LETKF, m ensemble members with different emissions are initialized at time #, and the
forward model (GEOS-Chem) is run in parallel for a user-specified time (termed the assimilation window)
for each of these ensemble members. After the runs complete, we construct the state vectors x? for each
ensemble member (indexed by 7). We localize the calculation within a 1500 km radius of the grid cell
being optimized, considering only observations within that radius; this converts a single intractable large
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matrix problem into many embarrassingly parallel calculations for individual grid cells involving much
smaller matrices. We weight observations by their distance from the target grid cell with the Gaspari-
Cohn function, a piecewise polynomial resembling a bell curve with a value of 1 at the grid cell and 0 at
1500 km away (Gaspari and Cohn, 1999).

To optimize the methane emissions, or concatenated emissions and concentrations of a given grid

cell, we start from the background state vector x?, and form the background perturbation matrix X? from
the m vector columns X?:

m
1 3)
X2 = xb — xb; xbzg E xb
i=1

Here X? represents the ith column of the 7 x m matrix X? where # is the length of the state vector; each

column of X? consists of the state vector from an ensemble member minus the mean state vector. The
model predictions made during the assimilation window must be compared to observations. Hence we

construct background vectors of simulated observations y? and a corresponding simulated observation
perturbation matrix ¥? formed from the m vector columns Y?:

_ 1
Y=yt -y Y =H(xb) Y=y
i=1

All simulated observations are timed to line up as close as possible with actual observations (in this case,
within one hour).
The mean analysis (posterior) state vector in the original space is then given by (Hunt et al., 2007):

X7 = xP + yXbPa(y?) R-1(y — yb) ®)

“)

where  is the vector of observations. P2 is an m X m matrix computed as follows:

-1
pe = (((m -1-1)+ y(Yb)TR—lyb)

where I is the m X m identity matrix. The analysis perturbation matrix is then given by

: (7
X% = x((m - 1)P)*

From here, the new ensemble state vectors can be constructed by adding x2 back to each column of X@.

With the ensemble updated and errors characterized, the ensemble can be evolved using GEOS-Chem for

the next assimilation window.

(6)

2.4 The CHEEREIO platform and LETKEF settings

CHEEREIO is a lightweight wrapper of GEOS-Chem written in Python which allows users to
conduct a range of LETKF applications by editing a single configuration file (Pendergrass et al., 2023).
It takes advantage of GEOS-Chem’s HEMCO emission module to update emissions without modifying
the source code (Lin et al., 2021). Here we describe several new settings in the CHEEREIO v1.3.1
implementation of LETKF (https://doi.org/10.5281/zenodo.11534085), which we use in this work.

Figure 1 shows the LETKF workflow as implemented in CHEEREIO v1.3.1. We apply the run-
in-place (RIP) method to the LETKF assimilation window (Kalnay and Yang, 2010; Liu et al., 2019).

6
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With RIP, we calculate the LETKF assimilation update using a long period of observations (15 days,
called the observation window), but then advance the assimilation window forward for a shorter period

205 (5 days). RIP thus maintains linear growth in posterior perturbations and allows the system more time to
assimilate information. Importantly, after advancing the assimilation window forward, we do not
reinitialize the ensemble for new runs. Instead, the assimilated state of the previous observation window
becomes the initial background state of the next assimilation window.
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Initialization Assimilation period k ( y vary 8)
Generate 32 ensemble | A :
members with perturbed Prior emissions — H
emission scaling factors B 1 . »| Run 32 ensemble members
- 2y scaling factors ) for obs. window (15 days) log_ | LETKF inversion for | exp |
L . 1 obs. window :
A L 32 L I 32|
* g
Spin up ensemble to | v
initialize :prte-ad Sl A - o> |n|t|a| conditions ] Relaxation tO |essssssssssaasd Concentrations at -
concentrations qeseeen 3 prior spread end of assim.
1 : i
I H (RTPS)  ewseneneees cilielan ek
I 32 . A I
H T ] 1 32]
¥ |
Advance one Posterior emissions |
assimilation =] scaling factors ]
period (5 days) 1
I . |
Time Jan1 Jan 16 Jan 21 Jan 26
Prior Compute
emissions LETKF
Observation window
Concentration spread
initializes next run
oremis] V.- o- @ __-oooC P
Posterior emis. e Y 8- -------- ° e Compute
from last LETKF | --"¢~~""""""""""--- O @---— T ____ . LETKF
i Observation window
TROPOMI observation @ o window
Concentration spread
initializes next run
_________ >
: ic | Y. e-Q __——---------"777 o T __ e
Posterior emis. ;::-::::-_--=._::;;;_-.—-" ________ . o Compute
from last LETKF e T ®---o > LETKF
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210 Figure 1: Flowchart of CHEEREIO v1.3.1 LETKF inversion procedure for assimilating TROPOMI methane data. We initialize a GEOS-
Chem CTM simulations with randomized multiplicative perturbations to the prior estimates, applied to each of the 32 ensemble members.
For assimilation period k&, CHEEREIO runs GEOS-Chem for the observation window (15 days) for each ensemble member, then conducts
the LETKF inversion by comparing the ensemble of GEOS-Chem values to the TROPOMI observations. over the observation window.
Posterior emission scaling factors and concentrations are then inflated to reflect the prior spread using the RTPS procedure. The posterior
215 emission estimates and inflated concentrations then become the prior estimate for the k+1 assimilation period advancing by 5 days.
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Because ensemble-based methods undersample the prior probability space, they suffer from
shrinking dispersion between ensemble members which can lead to artificially small prior error
estimation; an error inflation method is necessary to prevent ensemble collapse (Hunt et al., 2007).
Following Bisht et al. (2023), we use the Relaxation to Prior Spread (RTPS) inflation method (Whitaker
and Hamill, 2012). RTPS inflates the posterior ensemble standard deviation o (defined as the standard
deviation of each state vector element) of such that it partially reflects the background ensemble standard

deviation a?:

a _ (aRTPSab +(1- aRTPs)0a> xa (8)
infl — ol

Here agyps 1s a parameter between 0 and 1 which represents the weighted contribution of the background
standard deviation a® in inflating the analysis ensemble to obtain the final analysis perturbation matrix
Xing- After sensitivity tests to mitigate underdispersed ensemble spread (shown by decreasing fidelity to
observations over time), we take agyps to be 0.7, which is consistent with optimized values in Bisht et
al. (2023). In the runs where only methane emissions are optimized, we additionally apply RTPS to 3D
methane concentrations in the ensemble members even though we do not formally include concentrations
in the state vector.

We perform our emissions estimates with an assumption of lognormal errors on the prior emission
estimates, as is commonly done for analytical inversions (Maasakkers et al., 2019; Hancock et al., 2025)
but to our knowledge has not previously been applied in the LETKF formalism. A lognormal error pdf
better captures the upper tail of the methane emissions distribution than normal errors (Duren et al., 2019;
Cusworth et al., 2022) and also prevents unphysical negative posterior emission estimates (Miller et al.,
2014) considering that we do not optimize the soil sink. However, a lognormal distribution across
ensemble members violates the assumptions of the LETKF equations (Hunt et al., 2007). We solve this
problem by sampling methane emissions scaling factors for each ensemble member according to a
lognormal distribution centered on 1 (prior emission inventory) and run GEOS-Chem for each ensemble
member with these scaling factors applied. When it is time for the LETKF calculation, we apply a
logarithmic transform to the methane scaling factor distributions and thus obtain a normal distribution
(centered on 0) for the construction of the background perturbation matrix X?. We perform the LETKF
and once it is complete we apply an exponential to transform back to the original lognormal distribution,
which is then used to evolve GEOS-Chem once more. These transformations are indicated as “log” and
“exp” in Figure 1. The posterior solution is then the median of the LETKF ensemble.

Before ingesting the TROPOMI observations into the LETKF, we aggregate the original
observations into “super-observations” by averaging them onto the 2.0°%2.5° GEOS-Chem grid (Eskes
et al., 2003; Miyazaki et al., 2012; Pendergrass et al., 2023; Chen et al., 2023). To model the reduction in
observational error variance due to averaging and obtain the super-observation error standard deviation
Osuper> W€ follow a two-component error variance equation which separates contributions due to forward

model transport error variance (atzransport) and error variance for a single retrieval (c/):

P 2 (€))
Osuper = [(%z Gi> . (% + c)

i=1

2
+ Otransport
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Here p is the number of observations aggregated into a super-observation and c is the error correlation
between the individual retrievals within a super-observation. The transport error is fully correlated. We
take 0; = 17 ppb, Giransport = 6.1 ppb, and ¢ = 0.28 based on an empirical residual error method fit for

TROPOMI methane (Chen et al., 2023; Pendergrass et al., 2023).
2.5 Sub-grid source attribution

Our inversion optimizes emissions on a 2°%2.5° grid but the bottom-up inventories and TROPOMI data
have much finer resolution (0.1°%0.1° for anthropogenic emissions, 0.5°x0.5° for wetland emissions, 7x7
km? or 5.5x7 km? for TROPOMI observations at nadir). Here we exploit this high-resolution data with
the source attribution approach of Yu et al. (2023), in which we conserve the overall posterior emissions
in a 2°%2.5° grid cell but adjust relative source contributions within it based on subgrid observational
patterns. If TROPOMI observations are persistently elevated in a portion of the 2°x2.5° grid cell
associated with a particular sector, the Yu et al. (2023) methodology will attribute a larger fraction of the
correction to that sector. We neglect subgrid prior error terms in Yu et al. (2023) to obtain a subgrid
attribution based solely on the distribution of TROPOMI observations and prior sources. For wetlands we
update the prior sources for individual years using LPJ-MERRA2.

Most grid cells are not affected significantly by this sub-grid source attribution approach, but we
find substantial adjustments in a few regions including Sudd wetlands in South Sudan (where some
livestock emissions are re-attributed to wetlands) and in Bangladesh (where some rice emissions are re-
attributed to wetlands). Our global posterior wetlands emission increases by 10%, offset by decreases in
the rice, livestock, and waste sectors. In some regions, especially eastern Africa, estimates of livestock
emissions are highly uncertain, so we will make use of additional data sources in our interpretation of
results below.

3 Results and discussion

Figure 2 shows TROPOMI methane dry column mixing ratios (XCH4) for the study period, along with
the corresponding GEOS-Chem model biases using prior and posterior emissions with either
WetCHARTSs or LPJ-MERRA? as prior emissions for wetlands. The model with prior emissions has a
low bias due to a methane budget imbalance. The posterior emissions eliminate this bias. Figure 3a shows
the growth in global annual mean methane concentrations over the 2018-2023 study period. Trends in
NOAA surface methane concentrations (NOAA, 2024) are consistent with TROPOMI trends as well as
our posterior estimate. Figure 3b shows the posterior emissions from our four inversion ensemble
members (driven with different wetlands and either optimizing concentrations and emissions or emissions
alone), all predicting similar annual emissions (577 Tg a™! and 567 Tg a™! for WetCHARTSs and LPJ-
MERRAZ2 respectively in 2023). Seasonal CH4 variability and trends in both hemispheres are also well-
captured by the posterior (Figure 3cd).

Posterior emissions for 2023 are summarized in Table 1. Our best posterior estimate of 560 Tg a’
! for 2019 is within the 556-570 Tg a’! range calculated for 2019 by Qu et al. (2021) and the 553-586 Tg
a’! range from top-down inversions for 2010-2019 reviewed in Saunois et al. (2025). In 2020 and 2021
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we find that global methane emissions surged to 587 Tg a™! and 592 Tg a™! before declining to 572 Tg a’!
in 2022 and 570 Tg a’! in 2023, consistent with the 570-590 Tg a™! range for 2020-2022 reported in Qu et
al. (2024) and the 2020 estimate of 581-627 Tg a’! from Saunois et al. (2025). Our best estimate of fossil
fuel emissions (oil, gas, and coal) for 2019 is 88 Tg a’!, intermediate between the 80 Tg a™! found in the
2019 analytical inversion of Qu et al. (2021) and the 98 Tg a’! estimate for 2018-19 from 4D-Var
inversions done by Yu et al. (2023), but below the 100-124 Tg a’! range for 2010-2019 in Saunois et al.
(2025). Our 265 Tg a’! estimate for agricultural and waste emissions for 2019 is correspondingly above
the 213-242 Tg a’! range for 2010-2019 in Saunois et al. (2025), while our wetland posterior estimate of
150 Tg a’! falls within but at the low end of the 145-214 Tg a’! range from Saunois et al. (2025) and is
lower than Qu et al. (2024). We do not account for interannual variability in tropospheric OH, the main
methane sink; a changing sink would impact inferred emissions by mass balance. In particular, if OH
concentrations declined in 2020 due to COVID-19 lockdowns and increased biomass burning emissions,
mass balance would imply a smaller methane emissions surge than found here (W. Chen et al., 2025).
However, we predict similar posterior emissions as previous studies which do optimize OH (Qu et al.,
2024; He et al., 2025).
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TROPOMI observations and model bias using prior and posterior emissions, 2018-2023

TROPOMI CH, mean

Number of TROPOMI observations

1940 106
1920 e 105
e gL W 10
. - e | 1ss0 =< - i |l 3
g ey s S
- " hsoo < 10
(a) b |(b) )
PRIOR — TROPOMI POSTERIOR — TROPOMI
A
< i
o ‘ T
& £3
LLI o
=
o
-l
(c) (d) A=—-0.1+3.8ppb
n|
b
<
T
Q
()
=
(e) (f) A=0.2+4.0ppb

A

-25 0 25 50 75 100

ACH, (ppb

Figure 2: TROPOMI observations of methane dry column mixing ratios (XCH4) and comparison to GEOS-Chem simulations using either
prior or posterior emissions. Values are averages for June 2018 through December 2023. ACH,4 denotes the difference between the simulation
(with observation operators applied) and the observations. Global mean bias and spatial standard deviation are given inset. Results are shown
for wetlands prior estimates from either LPJ-MERRA?2 or WetCHARTS.
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Figure 3: Global methane trends, 2018-2023. Panel (a) shows global annual mean observations from NOAA background surface sites
(https://gml.noaa.gov/cecgg/trends ch4/), TROPOMI, and GEOS-Chem model simulations using prior emission estimates (including either
WetCHARTS or LPJ-MERRA?2 wetlands) and posterior emission estimates. The posterior represents the mean of the inversion ensemble.
Panel (b) shows annual posterior methane emissions for the inversion ensemble, including either WetCHARTS or LPJ-MERRA?2 wetlands
and either with or without optimization of concentrations. Panels (c) and (d) show mean TROPOMI and GEOS-Chem results smoothed
over monthly temporal resolution for the northern (c) and southern (d) hemispheres.

To understand the drivers of our posterior emissions trends, we disaggregate our results by region
and sector (Figure 4). We find a negative trend in South American emissions which we attribute to a
decline in wetland emissions; this is consistent in sign with other top-down work using GOSAT and
surface observations finding decreases in 2020 and 2021 relative to 2019 in the Orinoco, Pantanal, and
Amazon Basin wetlands (Lin et al., 2024). We attribute the 2020 methane surge to a 14 Tg a! increase in
emissions from sub-Saharan Africa, as in previous studies (Qu et al., 2022; Feng et al., 2022), and we
find that the elevated emissions persist into later years. Consistent with Qu et al. (2024), who find that
wetland emissions are relatively constant over 2019-2022 and that anthropogenic emissions drive much
of the 2020-2021 surge, we find that a surge in wetland emissions contributed to the 2020-2021 emissions
peak but anthropogenic sectors including livestock and waste are more important (Figure 4b).

However, anthropogenic attribution of the African emission surge may be unreliable given
uncertainty in tropical wetland prior inventories. Figure 5 compares our posterior emissions for the
northern tropics and boreal latitudes with water storage from inundation as measured by the Gravity
Recovery and Climate Experiment Follow-On (GRACE-FO) twin satellites, where the distance between
the satellites is used to measure liquid water equivalent (LWE) thickness anomalies (cm) relative to a
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time mean at monthly 0.5°x0.5° resolution (Watkins et al., 2015; Wiese et al., 2016; Wiese et al., 2023).
The northern tropics (0°N-30°N) explain much of the 2020-2021 surge and this corresponds closely with
increases in water storage; consistently, the declining emission trend in boreal regions (50°N-90°N)
corresponds with drying. Much of the northern tropics surge is associated with wetlands in South Sudan
and southern Sudan, which account for 9% of prior emissions (mean of WetCHARTs and LPJ-MERRA?2)
in the 0°N-30°N band but for our posterior 2021-23 estimate they surge to almost a third; indeed, we find
a 7.5 Tg a’! increase from 2019 to 2021 in the region, accounting for a quarter of the global emissions
increase in the same period. Our posterior solution predicts sharply increasing emissions after 2019 in the
Sudd, Machar, and Lotilla wetlands in South Sudan, which experienced extensive flooding in 2020 and
in following years and have been identified in previous work as globally significant drivers of the methane
emissions trend (Pandey et al., 2021; Feng et al., 2022; Hardy et al., 2023). Flooding of these areas is
associated with anomalous rainfall in the “short rains” season, driven by a strongly positive Indian Ocean
Dipole (IOD) event, with warmer ocean surface temperatures in the western Indian ocean driving
convection (Wainwright et al., 2021; Lunt et al., 2021, Palmer et al., 2023). There is some consensus in
climate models that both precipitation during the short rains and the frequency of extremely positive [OD
events will increase with climate change (Palmer et al., 2023), supporting the interpretation of this tropical
methane emission surge as a positive climate feedback. We attribute almost half of the 7.5 Tg a™! increase
in Sudan and South Sudan to anthropogenic sources (principally livestock) but this may reflect an
underestimate of wetland area in the prior inventories. Although it is difficult to separate livestock and
wetland emissions in this region due to co-location and isotopic similarities, additional data sources
capturing changes in inundation can offer evidence for wetland emissions over livestock.

Recent work indeed suggests that wetland extent in Africa may be underestimated due to sparse
observational data (Dong et al., 2024), and methane emissions from vegetated tropical wetlands may more
generally be underestimated by mechanistic models (France et al., 2022; Shaw et al., 2022). Wetlands in
South Sudan especially are prone to underestimates from wetland models because emissions are driven
by inflows from the White Nile and Sobat rivers rather than local precipitation (Pandey et al., 2021). The
post-2020 period corresponds with record high water levels in Lake Victoria which feeds the White Nile,
with the short rains at the end of 2019 driving a 1.5 m increase in lake water levels; water levels rose at a
downstream river station through 2022 even after Lake Victoria water levels began to fall (Dong et al.,
2024). High water levels in the Blue Nile also slow White Nile discharge, further contributing to sustained
flooding (Smith and El-Kammash, 2025). Neither the WetCHARTSs nor the LPJ-MERRA?2 inventories
capture the surge in these wetlands. As a result, our inversion and the previous inversion of Qu et al.
(2024) attribute the 2019-2021 methane surge to a 40% increase in livestock emissions in sub-Saharan
Africa, While livestock populations have grown (Nisbet et al., 2025), such an increase is inconsistent with
Food and Agricultural Organization (FAO) cattle population data, which shows only an increase of 8%
in 2023 relative to 2019 in the region (https://www.fao.org/faostat; last accessed: 2025-02-07). As Figure
6 shows, total emissions for the region including the increase after 2019 and seasonal emission peak are
closely associated with GRACE-FO water storage data, while emissions attributed to wetlands in
WetCHARTSs or LPJ-MERRA?2 do not reflect GRACE-FO trends. Our methodology is able to detect
methane surges in these wetlands in part because they are river-fed and less obscured by cloud cover than
other wetlands, such as the Congo and the Amazon, which are difficult for solar backscatter retrievals to
observe especially in the rainy season (Figure 2b).
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We see from Figure 6 that inundation as measured by GRACE-FO is strongly correlated with the
seasonality of methane emissions in sub-Saharan Africa. Figure 7 shows the global seasonal cycle of
posterior methane emissions for 2021, avoiding missing TROPOMI observations in 2022-23. The global
seasonality of methane emissions is mainly driven by the northern hemisphere. The seasonality of
methane in the southern hemisphere (Figure 3) is largely driven by the OH sink (East et al., 2024). Unlike
the prior estimates including WetCHARTSs or LPJ-MERRA?2 wetlands, which show a July-August peak
in the northern hemisphere (Figure 7a) in line with other wetland models (Zhang et al., 2024), we find a
sharp September peak driven by tropical emissions which strongly influences global seasonality (Figure
7b). Figure 7c shows that the peak of northern tropical emissions corresponds with the peak of mean
GRACE-FO water storage data, and occurs later in the year than implied by prior inventories. Livestock
shows a seasonality in phase with wetlands, which as pointed out above could be due to misattribution in
the tropics, though food availability for cattle in eastern Africa may be in phase with wetland extent. Rice
emissions in the northern hemisphere peak in July-September corresponding to the dominant growing
season (Z. Chen et al., 2025) and may increase in importance as rice production increases in Africa (Chen
et al., 2024).
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390 Figure 4: Annual emission trends for 2019-2023 disaggregated by region and sector. Panels (a) and (b) show posterior emission
changes relative to 2019, disaggregated by region and sector respectively. Inset percentages show changes relative to 2019
values for selected regions/sectors. Error bars show range of inversion ensemble for the global emission trend. Panel (c) shows
2019-2023 trends in posterior emissions by region obtained from linear regression.
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395 Figure 5: Inundation and posterior emission trends. Top panel compares total posterior emission north of 50°N with mean
GRACE-FO liquid water equivalent (LWE) anomalies weighted by gridded total posterior emissions. Bottom panel is the same
but for the northern tropics (0-30°N).
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400 Figure 6: Inundation and posterior emissions trends in sub-Saharan Africa (region defined in Figure 4). The panel compares
total and wetlands posterior emissions with mean GRACE-FO liquid water equivalent (LWE) anomalies. LWE is an average
for the region, weighted by gridded total posterior emissions.
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Figure 7. Posterior emission seasonality in 2021. Panel (a) shows northern hemisphere posterior emissions disaggregated by
source sector, where the seasonal cycle is obtained by subtracting the 2021 mean. The prior seasonal cycle of total emissions
is also shown in grey lines for both LPJ-MERRA2 and WetCHARTSs wetlands. Panel (b) is as in panel (a) but global and
disaggregated by latitude. Error bars show range of inversion ensemble. Panel (c) shows prior simulations driven by LPJ-
MERRA2 and WetCHARTSs wetlands with the posterior best estimate in the northern tropics (0°N-30°N), compared to mean
GRACE-FO liquid water equivalent (LWE) anomalies in the region, weighted by gridded total posterior emissions.

Fossil fuel emissions are generally considered to be aseasonal, with the possible exception of
Russian pipelines (Reshetnikov et al., 2000), but we observe seasonality in some production basins
especially in the US. Figure 8 shows the difference in best-estimate posterior fossil fuel emissions in cold
months minus warm months, with many areas showing elevated cold season emissions including several
major US basins, Hassi R’Mel field (Algeria), Sirte basin (Libya), and West Karun basin (Iran). This
phenomenon has been observed before in the Permian (Vanselow et al., 2024; Hu et al., 2025; Varon et
al., 2025), but it is not seen worldwide and may suggest processes specific to the industry in the US and
a few other regions. Possible causes include more frequent equipment failures in winter or emissions from
poorly weatherized separator vessels, where more gas remains dissolved in liquid at cold temperatures
and is vented later from liquids storage tanks (Varon et al., 2025). We do not find oil and gas seasonality
in Russia or other boreal regions, but this may be due to poor observational capacity in the winter.
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Figure 8: Seasonality of oil and gas emissions for 2019-2021. Panel (a) shows northern hemisphere mean fossil fuel emissions
in cold months (December through April) minus warm months (June through September) in grid cells where fossil fuels
account for at least 50% of emissions. Inset (b) is as in (a) but for the contiguous US (CONUS), with major sedimentary basins
overlaid; inset (c) is as in (a) but for Algeria and Libya, with oil and gas fields overlaid (Sabbatino et al., 2017).

4 Conclusions

We used the localized ensemble transform Kalman filter (LETKF) algorithm, deployed through
the open-source CHEEREIO platform, to infer global methane emission trends and seasonalities by
assimilation of TROPOMI satellite observations of atmospheric methane from May 2018 through
December 2023 over 5-day time windows. Our goal was to understand the regions and source sectors
driving the rapid increase of methane over that period and its seasonality. We used the blended TROPOMI
product of Balasus et al. (2023) that corrects TROPOMI retrieval biases using machine learning applied
to collocated observations from the GOSAT satellite instrument.

Our posterior emissions from the assimilation of TROPOMI data reproduce the observed 2019-
2023 trends in methane concentrations at surface sites and from TROPOMI, with minimal regional bias.
We estimate that emissions surged from 560 Tg a™! in 2019 to 587-592 Tg a! in 2020-2021 before
declining to 572-570 Tg a! in 2022-2023, not accounting for possible changes in OH concentrations.
Sub-Saharan Africa contributed 14 Tg a! of the 27 Tg a™! global increase in 2020 and this contribution
was sustained through 2023. Past attribution of this surge to anthropogenic sources may be due to errors
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in the spatial distribution of wetlands, as we find that the emission increases correspond closely with
inundation as measured by the GRACE-FO satellite instrument. Wetlands in East Africa, particularly the
Sudd, are instrumental in driving the methane trend but are poorly represented in current wetland emission
models.

Methane emissions show a large seasonality and the high temporal resolution of our LETKF
implementation allows us to probe its origin. We find that this seasonality is dominated by northern
hemisphere wetland emissions and peaks in September, as opposed to July in wetland models. The
September peak in the tropics closely follows inundation patterns. This finding is in line with previous
work showing a mismatch between field observations and tropical wetland emissions predicted by
models, and points towards the need for improved modelling in this critical region. Oil and gas emissions
show little seasonality globally but we find that production fields in the US have a distinct seasonal cycle
of elevated emissions during the cold season.

Limitations of this study include remaining uncertainties regarding source attribution and possible
variability in OH concentrations. Eastern Africa is a key region driving the methane emission trend, but
the spatial and seasonal variability of livestock and wetland emissions in this region are highly uncertain
and local observations are lacking. While GRACE-FO indicates wetland inundation as an emissions
driver, future work could improve source attribution by improving prior emissions inventories, especially
wetland models, Our approach also does not consider the effects of changing methane loss to OH over
2019-2023. If tropospheric OH declined in 2020, it could imply a smaller methane emissions surge than
found here. Incorporation of oxidation products like CO and formaldehyde may help constrain OH (Yin
et al., 2021).

Our CHEEREIO software toolkit is openly available (https://doi.org/10.5281/zenodo.11534085)
as a general user-friendly implementation of LETKF for assimilating observations of atmospheric
composition through the GEOS-Chem chemical transport model. In this work we introduced a novel
approach to specify log-normal emissions errors within the LETKF framework, and this is released as
part of CHEEREIO version 1.3.1.

Data and code availability

The CHEEREIO source code is available at https://github.com/drewpendergrass/ CHEEREIQO; the version
of CHEEREIO used in this paper (1.3.1) is archived at https://doi.org/10.5281/zenodo.11534085
(Pendergrass et al., 2023). GEOS-Chem version 14.1.1 source code 1is archived at
https://doi.org/10.5281/zenodo.7696632. The blended TROPOMI-GOSAT product is available at
https://registry.opendata.aws/blended-tropomi-gosat-methane (Balasus et al., 2023) and NOAA surface
data is available at (https://gml.noaa.gov/ccgg/trends_ch4/). Wetland emissions from WetCHARTSs
v1.3.1 are available at https://doi.org/10.3334/ORNLDAAC/1915 (Ma et al., 2021) and from LPJ-wsl at
https://gmao.gsfc.nasa.gov/gmaoftp/lott/CH4/wetlands/. Oil, gas, and coal emissions from the GFEIv2
inventory are available at https://doi.org/10.7910/DVN/HH4EUM and other anthropogenic emissions are
available from EDGARv6 at https://doi.org/10.2760/074804. Regional anthropogenic emissions are
available for the contiguous US (https:/www.epa.gov/ghgemissions/gridded-2012-methane-emissions),
Canada (https://doi.org/10.7910/DVN/CC3KLO), and Mexico
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(https://doi.org/10.7910/DVN/SFUTWM). GRACE-FO data are from https://doi.org/10.5067/TEMSC-
3JC634. Scaled OH fields, the stratospheric-adjusted GEOS-Chem restart file, stratospheric loss rates,
CHEEREIO configuration files, and base HEMCO configuration file required to reproduce this work are
permanently archived on Zenodo at https://doi.org/10.5281/zenodo.15120760. Monthly gridded posterior
emissions for the posterior best estimate is also provided at https://doi.org/10.5281/zenodo.15120760.
Additional data related to this study can be obtained on request.

Acknowledgements

This work was supported by the NASA Carbon Monitoring System. DCP was funded in part by an NSF
Graduate Research Fellowship Program (GRFP) grant. This work was funded in part by an appointment
to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology,
administered by Oak Ridge Associated Universities under contract with NASA. Part of this research was
carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. John Worden acknowledges support from the NASA
Carbon Monitoring System (22-CMS22-0010).

Competing interests

The corresponding author has declared that none of the authors has any competing interests.

Author contributions

DCP and DJJ designed the study. DCP built the CHEEREIO v1.3.1 platform and performed the inversion
with contributions from NB, LE, DJV, JDE, MH, TAM, EP, and HN. NB provided the TROPOMI-
GOSAT product and offered guidance. DJJ, NB, LE, DJV, JDE, MH, TAM, EP, HN, and JRW discussed
results and interpretation. DCP and DIJJ wrote the paper with input from all authors.

References

Balasus, N., Jacob, D. J., Lorente, A., Maasakkers, J. D., Parker, R. J., Boesch, H., Chen, Z., Kelp, M.
M., Nesser, H., & Varon, D. J. (2023). A blended TROPOMI+GOSAT satellite data product for
atmospheric methane using machine learning to correct retrieval biases. Atmospheric
Measurement Techniques, 16(16), 3787-3807. https://doi.org/10.5194/amt-16-3787-2023

Basu, S., Lan, X., Dlugokencky, E., Michel, S., Schwietzke, S., Miller, J. B., Bruhwiler, L., Oh, Y., Tans,
P. P., Apadula, F., Gatti, L. V., Jordan, A., Necki, J., Sasakawa, M., Morimoto, S., Di lorio, T.,
Lee, H., Arduini, J., & Manca, G. (2022). Estimating emissions of methane consistent with
atmospheric measurements of methane and 6'3C of methane. Atmospheric Chemistry and Physics,
22(23), 15351-15377. https://doi.org/10.5194/acp-22-15351-2022

20


https://doi.org/10.7910/DVN/5FUTWM
https://doi.org/10.5067/TEMSC-3JC634
https://doi.org/10.5067/TEMSC-3JC634
https://doi.org/10.5281/zenodo.15120760
https://doi.org/10.5281/zenodo.15120760
https://doi.org/10.5194/amt-16-3787-2023
https://doi.org/10.5194/acp-22-15351-2022

515

520

525

530

535

540

545

550

Bisht, J. S. H., Patra, P. K., Takigawa, M., Sekiya, T., Kanaya, Y., Saitoh, N., & Miyazaki, K. (2023).
Estimation of CH4 emission based on an advanced 4D-LETKF assimilation system. Geoscientific
Model Development, 16(6), 1823—1838. https://doi.org/10.5194/gmd-16-1823-2023

Bloom, A.A., K. Bowman, M. Lee, A.J. Turner, R. Schroeder, J.R. Worden, R.J. Weidner, K.C.
McDonald, and D.J. Jacob. 2017. CMS: Global 0.5-deg Wetland Methane Emissions and
Uncertainty (WetCHARTs v1.0). ORNL DAAC, Oak Ridge, Tennessee, USA.
https://doi.org/10.3334/ORNLDAAC/1502

Borsdorff, T., Martinez-Velarte, M. C., Sneep, M., ter Linden, M. & Landgraf, J. Random Forest
Classifier for Cloud Clearing of the Operational TROPOMI XCH4 Product. Remote Sensing 16,
1208 (2024).

Bouarar, 1., Gaubert, B., Brasseur, G. P., Steinbrecht, W., Doumbia, T., Tilmes, S., Liu, Y., Stavrakou,
T., Deroubaix, A., Darras, S., Granier, C., Lacey, F., Miiller, J.-F., Shi, X., Elguindi, N., & Wang,
T. (2021). Ozone Anomalies in the Free Troposphere During the COVID-19 Pandemic.
Geophysical Research Letters, 48(16), €2021GL094204. https://doi.org/10.1029/2021GL094204

Chen, Z., Jacob, D. J., Gautam, R., Omara, M., Stavins, R. N., Stowe, R. C., Nesser, H. O., Sulprizio, M.
P., Lorente, A., Varon, D. J., Lu, X., Shen, L., Qu, Z., Pendergrass, D. C., & Hancock, S. (2023).
Satellite quantification of methane emissions and oil/gas methane intensities from individual
countries in the Middle East and North Africa: Implications for climate action. EGUsphere, 1-42.
https://doi.org/10.5194/egusphere-2022-1504

Chen, Z., Balasus, N., Lin, H., Nesser, H., & Jacob, D. J. (2024). African rice cultivation linked to rising
methane. Nature Climate Change, 14(2), 148—151. https://doi.org/10.1038/s41558-023-01907-x

Chen, Z., Jacob, D. J., Lin, H., Balasus, N., Hardy, A., East, J., Zhang, Y., Runkle, B., Hancock, S., &
Taylor, C. (2025). Global Rice Paddy Inventory (GRPI): A high-resolution inventory of methane
emissions  from rice agriculture based on Landsat satellite inundation data.
https://eartharxiv.org/repository/view/7890/

Chen, W., Zhang, Y., & Liang, R. (2025). Converging evidence for reduced global atmospheric oxidation
in 2020. National Science Review, 12(8), nwaf232. https://doi.org/10.1093/nsr/nwaf232

Crippa, M., Guizzardi, D., Solazzo, E., Muntean, M., Schaaf, E., Monforti-Ferrario, F., Banja, M., Olivier,
J., Grassi, G., Rossi, S. and Vignati, E., GHG emissions of all world countries, EUR 30831 EN,
Publications Office of the European Union, Luxembourg, 2021, ISBN 978-92-76-41547-3,
doi:10.2760/074804, JRC126363

Cusworth, D. H., Thorpe, A. K., Ayasse, A. K., Stepp, D., Heckler, J., Asner, G. P., Miller, C. E., Yadav,
V., Chapman, J. W., Eastwood, M. L., Green, R. O., Hmiel, B., Lyon, D. R., & Duren, R. M.
(2022). Strong methane point sources contribute a disproportionate fraction of total emissions
across multiple basins in the United States. Proceedings of the National Academy of Sciences,
119(38), €2202338119. https://doi.org/10.1073/pnas.2202338119

Drinkwater, A., Palmer, P. 1., Feng, L., Arnold, T., Lan, X., Michel, S. E., Parker, R., & Boesch, H.
(2023). Atmospheric data support a multi-decadal shift in the global methane budget towards
natural tropical emissions. Atmospheric Chemistry and Physics, 23(14), 8429-8452.
https://doi.org/10.5194/acp-23-8429-2023

21


https://doi.org/10.5194/gmd-16-1823-2023
https://doi.org/10.3334/ORNLDAAC/1502
https://doi.org/10.1029/2021GL094204
https://doi.org/10.5194/egusphere-2022-1504
https://doi.org/10.1038/s41558-023-01907-x
https://eartharxiv.org/repository/view/7890/
https://doi.org/10.1093/nsr/nwaf232
https://doi.org/10.1073/pnas.2202338119
https://doi.org/10.5194/acp-23-8429-2023

555

560

565

570

575

580

585

590

Dong, B., Peng, S., Liu, G., Pu, T., Gerlein-Safdi, C., Prigent, C., & Lin, X. (2024). Underestimation of
Methane Emissions From the Sudd Wetland: Unraveling the Impact of Wetland Extent Dynamics.
Geophysical Research Letters, 51(16), €2024GL110690. https://doi.org/10.1029/2024GL 110690

Duren, R. M., Thorpe, A. K., Foster, K. T., Rafiq, T., Hopkins, F. M., Yadav, V., Bue, B. D., Thompson,
D. R., Conley, S., Colombi, N. K., Frankenberg, C., McCubbin, 1. B., Eastwood, M. L., Falk, M.,
Herner, J. D., Croes, B. E., Green, R. O., & Miller, C. E. (2019). California’s methane super-
emitters. Nature, 575(7781), Article 7781. https://doi.org/10.1038/s41586-019-1720-3

East, J. D., Jacob, D. J., Balasus, N., Bloom, A. A., Bruhwiler, L., Chen, Z., Kaplan, J. O., Mickley, L. J.,
Mooring, T. A., Penn, E., Poulter, B., Sulprizio, M. P., Worden, J. R., Yantosca, R. M., & Zhang,
Z. (2024). Interpreting the Seasonality of Atmospheric Methane. Geophysical Research Letters,
51(10), e2024GL108494. https://doi.org/10.1029/2024GL 108494

Eskes, H. J., Velthoven, P. F. J. V., Valks, P. J. M., & Kelder, H. M. (2003). Assimilation of GOME total-
ozone satellite observations in a three-dimensional tracer-transport model. Quarterly Journal of
the Royal Meteorological Society, 129(590), 1663—1681. https://doi.org/10.1256/qj.02.14

Etiope, G., Ciotoli, G., Schwietzke, S., & Schoell, M. (2019). Gridded maps of geological methane
emissions and their isotopic signature. FEarth System Science Data, 11(1), 1-22.
https://doi.org/10.5194/essd-11-1-2019

Feng, L., Palmer, P. 1., Bosch, H., Parker, R. J., Webb, A. J., Correia, C. S. C., Deutscher, N. M.,
Domingues, L. G., Feist, D. G., Gatti, L. V., Gloor, E., Hase, F., Kivi, R, Liu, Y., Miller, J. B.,
Morino, I., Sussmann, R., Strong, K., Uchino, O., ... Zahn, A. (2017). Consistent regional fluxes
of CH4 and CO?2 inferred from GOSAT proxy XCH4: XCO2 retrievals, 2010-2014. Atmospheric
Chemistry and Physics, 17(7), 4781-4797. https://doi.org/10.5194/acp-17-4781-2017

Feng, L., Palmer, P. 1., Parker, R. J., Lunt, M. F., & Bosch, H. (2023). Methane emissions are
predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and
2021. Atmospheric Chemistry and Physics, 23(8), 4863—4880. https://doi.org/10.5194/acp-23-
4863-2023

France, J. L., Lunt, M. F., Andrade, M., Moreno, 1., Ganesan, A. L., Lachlan-Cope, T., Fisher, R. E.,
Lowry, D., Parker, R. J., Nisbet, E. G., & Jones, A. E. (2022). Very large fluxes of methane
measured above Bolivian seasonal wetlands. Proceedings of the National Academy of Sciences,
119(32), €2206345119. https://doi.org/10.1073/pnas.2206345119

Fung, L., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P., & Fraser, P. J. (1991). Three-
dimensional model synthesis of the global methane cycle. Journal of Geophysical Research:
Atmospheres, 96(D7), 13033—13065. https://doi.org/10.1029/91JD01247

Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions.
Quarterly Journal of the Royal Meteorological Society, 125(554), 723-757.
https://doi.org/10.1002/qj.49712555417

Hancock, S. E., Jacob, D. J., Chen, Z., Nesser, H., Davitt, A., Varon, D. J., Sulprizio, M. P., Balasus, N.,
Estrada, L. A., Cazorla, M., Dawidowski, L., Diez, S., East, J. D., Penn, E., Randles, C. A.,
Worden, J., Aben, 1., Parker, R. J., & Maasakkers, J. D. (2025). Satellite quantification of methane
emissions from South American countries: A high-resolution inversion of TROPOMI and
GOSAT  observations.  Atmospheric ~ Chemistry — and  Physics, 25(2), 797-817.
https://doi.org/10.5194/acp-25-797-2025

22


https://doi.org/10.1029/2024GL110690
https://doi.org/10.1029/2024GL108494
https://doi.org/10.1256/qj.02.14
https://doi.org/10.5194/essd-11-1-2019
https://doi.org/10.5194/acp-17-4781-2017
https://doi.org/10.5194/acp-23-4863-2023
https://doi.org/10.5194/acp-23-4863-2023
https://doi.org/10.1073/pnas.2206345119
https://doi.org/10.1029/91JD01247
https://doi.org/10.1002/qj.49712555417
https://doi.org/10.5194/acp-25-797-2025

595

600

605

610

615

620

625

630

Hardy, A., Palmer, P. 1., & Oakes, G. (2023). Satellite data reveal how Sudd wetland dynamics are linked
with globally-significant methane emissions. Environmental Research Letters, 18(7), 074044.
https://doi.org/10.1088/1748-9326/ace272

Hausmann, P., Sussmann, R., & Smale, D. (2016). Contribution of oil and natural gas production to
renewed increase in atmospheric methane (2007-2014): Top—down estimate from ethane and
methane column observations. Atmospheric Chemistry and Physics, 16(5), 3227-3244.
https://doi.org/10.5194/acp-16-3227-2016

He, M., Jacob, D. J., Estrada, L. A., Varon, D. J., Sulprizio, M., Balasus, N., East, J. D., Penn, E.,
Pendergrass, D. C., Chen, Z., Mooring, T. A., Maasakkers, J. D., Brodrick, P. G., Frankenberg,
C., Bowman, K. W., & Bruhwiler, L. (n.d.). Attributing 2019-2024 methane growth using
TROPOMI satellite observations. Retrieved July 8, 2025, from
https://www.authorea.com/users/930038/articles/1301350-attributing-2019-2024-methane-
growth-using-tropomi-satellite-
observations?commit=b6a9d511e5d581124cc7ad597689deaa0df7dc46

Houweling, S., Bergamaschi, P., Chevallier, F., Heimann, M., Kaminski, T., Krol, M., Michalak, A. M.,
& Patra, P. (2017). Global inverse modeling of CH4 sources and sinks: An overview of methods.
Atmospheric Chemistry and Physics, 17(1), 235-256. https://doi.org/10.5194/acp-17-235-2017

Hmiel, B., Petrenko, V. V., Dyonisius, M. N., Buizert, C., Smith, A. M., Place, P. F., Harth, C., Beaudette,
R., Hua, Q., Yang, B., Vimont, 1., Michel, S. E., Severinghaus, J. P., Etheridge, D., Bromley, T.,
Schmitt, J., Fain, X., Weiss, R. F., & Dlugokencky, E. (2020). Preindustrial 14CH4 indicates
greater  anthropogenic  fossil CH4  emissions.  Nature,  578(7795), 409-412.
https://doi.org/10.1038/s41586-020-1991-8

Hu, L., Andrews, A. E., Montzka, S. A., Miller, S. M., Bruhwiler, L., Oh, Y., Sweeney, C., Miller, J. B.,
McKain, K., Ibarra Espinosa, S., Davis, K., Miles, N., Mountain, M., Lan, X., Crotwell, A.,
Madronich, M., Mefford, T., Michel, S., & Houwelling, S. (2025). An Unexpected Seasonal Cycle
in U.S. Oil and Gas Methane Emissions. Environmental Science & Technology, 59(20), 9968—
9979. https://doi.org/10.1021/acs.est.4c14090

Hunt, B. R., Kostelich, E. J., & Szunyogh, 1. (2007). Efficient data assimilation for spatiotemporal chaos:
A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230(1), 112-126.
https://doi.org/10.1016/].physd.2006.11.008

IPCC (2019). Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, edited
by: Calvo Buendia, E., Tanabe, K., Kranjc, A., Jamsranjav, B., Fukuda, M., Ngarize, S., Osako,
A., Pyrozhenko, Y., Shermanau, P., and Federici, S., IPCC, Switzerland,
https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-
greenhouse-gas-inventories/ (last access: 23 February 2023), 2019.

Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., Chance, K., Aben, 1., McKeever,
J., & Frankenberg, C. (2016). Satellite observations of atmospheric methane and their value for
quantifying methane emissions. Atmospheric Chemistry and Physics, 16(22), 14371-14396.
https://doi.org/10.5194/acp-16-14371-2016

Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam, R., Guanter, L.,
Kelley, J., McKeever, J., Ott, L. E., Poulter, B., Qu, Z., Thorpe, A. K., Worden, J. R., & Duren,
R. M. (2022). Quantifying methane emissions from the global scale down to point sources using

23


https://doi.org/10.1088/1748-9326/ace272
https://doi.org/10.5194/acp-16-3227-2016
https://www.authorea.com/users/930038/articles/1301350-attributing-2019-2024-methane-growth-using-tropomi-satellite-observations?commit=b6a9d511e5d581124cc7ad597689deaa0df7dc46
https://www.authorea.com/users/930038/articles/1301350-attributing-2019-2024-methane-growth-using-tropomi-satellite-observations?commit=b6a9d511e5d581124cc7ad597689deaa0df7dc46
https://www.authorea.com/users/930038/articles/1301350-attributing-2019-2024-methane-growth-using-tropomi-satellite-observations?commit=b6a9d511e5d581124cc7ad597689deaa0df7dc46
https://doi.org/10.5194/acp-17-235-2017
https://doi.org/10.1038/s41586-020-1991-8
https://doi.org/10.1021/acs.est.4c14090
https://doi.org/10.1016/j.physd.2006.11.008

635

640

645

650

655

660

665

670

675

satellite observations of atmospheric methane. Atmospheric Chemistry and Physics, 22(14),
9617-9646. https://doi.org/10.5194/acp-22-9617-2022

Kalnay, E., & Yang, S.-C. (2010). Accelerating the spin-up of Ensemble Kalman Filtering. Quarterly
Journal of  the Royal Meteorological Society, 136(651), 1644-1651.
https://doi.org/10.1002/qj.652

Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller, C. A., Fritz, T. M., Eastham, S. D.,
Emmons, L. K., Campbell, P. C., Baker, B., Saylor, R. D., & Montuoro, R. (2021). Harmonized
Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models:
Application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and
NOAA UFS models. Geoscientific Model Development, 14(9), 5487-5506.
https://doi.org/10.5194/gmd-14-5487-2021

Lin, X., Peng, S., Ciais, P., Hauglustaine, D., Lan, X., Liu, G., Ramonet, M., Xi, Y., Yin, Y., Zhang, Z.,
Bosch, H., Bousquet, P., Chevallier, F., Dong, B., Gerlein-Safdi, C., Halder, S., Parker, R. J.,
Poulter, B., Pu, T., ... Zheng, B. (2024). Recent methane surges reveal heightened emissions from
tropical inundated areas. Nature Communications, 15(1), 10894. https://doi.org/10.1038/s41467-
024-55266-y

Liu, Y., Kalnay, E., Zeng, N., Asrar, G., Chen, Z., & Jia, B. (2019). Estimating surface carbon fluxes
based on a local ensemble transform Kalman filter with a short assimilation window and a long
observation window: An observing system simulation experiment test in GEOS-Chem 10.1.
Geoscientific Model Development, 12(7), 2899-2914. https://doi.org/10.5194/gmd-12-2899-
2019

Lorente, A., Borsdorff, T., Butz, A., Hasekamp, O., aan de Brugh, J., Schneider, A., Wu, L., Hase, F.,
Kivi, R., Wunch, D., Pollard, D. F., Shiomi, K., Deutscher, N. M., Velazco, V. A., Roehl, C. M.,
Wennberg, P. O., Warneke, T., & Landgraf, J. (2021). Methane retrieved from TROPOMI:
Improvement of the data product and validation of the first 2 years of measurements. Atmospheric
Measurement Techniques, 14(1), 665—684. https://doi.org/10.5194/amt-14-665-2021

Lunt, M. F., Palmer, P. 1., Lorente, A., Borsdorff, T., Landgraf, J., Parker, R. J., & Boesch, H. (2021).
Rain-fed pulses of methane from East Africa during 2018-2019 contributed to atmospheric
growth rate. Environmental Research Letters, 16(2), 024021. https://doi.org/10.1088/1748-
9326/abd8fa

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M., Wirth, T., Hight, C.,
DeFigueiredo, M., Desai, M., Schmeltz, R., Hockstad, L., Bloom, A. A., Bowman, K. W., Jeong,
S., & Fischer, M. L. (2016). Gridded National Inventory of U.S. Methane Emissions.
Environmental Science & Technology, 50(23), 13123-13133.
https://doi.org/10.1021/acs.est.6b02878

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J.-X., Zhang, Y.,
Hersher, M., Bloom, A. A., Bowman, K. W., Worden, J. R., Janssens-Maenhout, G., & Parker, R.
J. (2019). Global distribution of methane emissions, emission trends, and OH concentrations and
trends inferred from an inversion of GOSAT satellite data for 2010-2015. Atmospheric Chemistry
and Physics, 19(11), 7859-7881. https://doi.org/10.5194/acp-19-7859-2019

Michel, S. E., Lan, X., Miller, J., Tans, P., Clark, J. R., Schaefer, H., Sperlich, P., Brailsford, G.,
Morimoto, S., Moossen, H., & Li, J. (2024). Rapid shift in methane carbon isotopes suggests

24


https://doi.org/10.5194/acp-22-9617-2022
https://doi.org/10.5194/gmd-14-5487-2021
https://doi.org/10.1038/s41467-024-55266-y
https://doi.org/10.1038/s41467-024-55266-y
https://doi.org/10.5194/amt-14-665-2021
https://doi.org/10.1088/1748-9326/abd8fa
https://doi.org/10.1088/1748-9326/abd8fa
https://doi.org/10.5194/acp-19-7859-2019

680

685

690

695

700

705

710

715

microbial emissions drove record high atmospheric methane growth in 2020-2022. Proceedings
of the National Academy of Sciences, 121(44), €2411212121.
https://doi.org/10.1073/pnas.2411212121

Miller, S. M., Michalak, A. M., & Levi, P. J. (2014). Atmospheric inverse modeling with known physical
bounds: An example from trace gas emissions. Geoscientific Model Development, 7(1), 303-315.
https://doi.org/10.5194/gmd-7-303-2014

Miyazaki, K., Eskes, H. J., & Sudo, K. (2012). Global NOx emission estimates derived from an
assimilation of OMI tropospheric NO2 columns. Atmospheric Chemistry and Physics, 12(5),
2263-2288. https://doi.org/10.5194/acp-12-2263-2012

Mooring, T. A., Jacob, D. J., Sulprizio, M. P., Balasus, N., Baier, B. C., Kiefer, M., et al. (2024).
Evaluating Stratospheric Methane in GEOS-Chem with Satellite and Balloon Observations.
Presented at the American Meteorological Society 104th Annual Meeting, Baltimore, MD, USA.
Retrieved from https://ams.confex.com/ams/104ANNUAL/meetingapp.cgi/Paper/437083

Morgenstern, O., Moss, R., Manning, M., Zeng, G., Schaefer, H., Usoskin, 1., Turnbull, J., Brailsford, G.,
Nichol, S., & Bromley, T. (2025). Radiocarbon monoxide indicates increasing atmospheric
oxidizing capacity. Nature Communications, 16(1), 249. https://doi.org/10.1038/s41467-024-
55603-1

Murguia-Flores, F., Arndt, S., Ganesan, A. L., Murray-Tortarolo, G., & Hornibrook, E. R. C. (2018). Soil
Methanotrophy Model (MeMo v1.0): A process-based model to quantify global uptake of
atmospheric methane by soil. Geoscientific Model Development, 11(6), 2009-2032.
https://doi.org/10.5194/gmd-11-2009-2018

Naik, V., Szopa, S., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W. D., Fuzzi, S., Gallardo, L.,
Kiendler Scharr, A., Klimont, Z., Liao, H., Unger, N., and Zanis, P.: Short-Lived Climate Forcers,
in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-
Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, M. L., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T.
K., Waterfield, T., Yelek¢i, O., Yu, R., and Zhou, B., Cambridge University Press,
https://www.ipcc.ch/report/ar6/wgl/downloads/ report/IPCC_AR6 WGI Chapter06.pdf (last
access: 21 Feb 2023), 2021

Nisbet, E. G., Fisher, R. E., Lowry, D., France, J. L., Allen, G., Bakkaloglu, S., Broderick, T. J., Cain,
M., Coleman, M., Fernandez, J., Forster, G., Griffiths, P. T., Iverach, C. P., Kelly, B. F. J,,
Manning, M. R., Nisbet-Jones, P. B. R., Pyle, J. A., Townsend-Small, A., al-Shalaan, A., ...
Zazzeri, G. (2020). Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris
Agreement. Reviews of Geophysics, 58(1), €2019RG000675.
https://doi.org/10.1029/2019RG000675

Nisbet, E. G. (2023). Climate feedback on methane from wetlands. Nature Climate Change, 13(5), 421—
422. https://doi.org/10.1038/s41558-023-01634-3

Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Michel, S. E., Lan, X., Réckmann, T., Denier van der
Gon, H. A. C., Schmitt, J., Palmer, P. 1., Dyonisius, M. N., Oh, Y., Fisher, R. E., Lowry, D.,
France, J. L., White, J. W. C., Brailsford, G., & Bromley, T. (2023). Atmospheric Methane:

25


https://doi.org/10.1073/pnas.2411212121
https://doi.org/10.5194/gmd-7-303-2014
https://doi.org/10.5194/acp-12-2263-2012
https://doi.org/10.1038/s41467-024-55603-1
https://doi.org/10.1038/s41467-024-55603-1
https://doi.org/10.5194/gmd-11-2009-2018
https://doi.org/10.1029/2019RG000675
https://doi.org/10.1038/s41558-023-01634-3

720

725

730

735

740

745

750

755

Comparison Between Methane’s Record in 2006-2022 and During Glacial Terminations. Global
Biogeochemical Cycles, 37(8), €2023GB007875. https://doi.org/10.1029/2023GB007875

Nisbet, E. G., Manning, M. R., Lowry, D., Fisher, R. E., Lan, X. (Lindsay), Michel, S. E., France, J. L.,
Nisbet, R. E. R., Bakkaloglu, S., Leitner, S. M., Brooke, C., Rockmann, T., Allen, G., Denier van
der Gon, H. A. C., Merbold, L., Scheutz, C., Woolley Maisch, C., Nisbet-Jones, P. B. R., Alshalan,
A., ... Dlugokencky, E. J. (2025). Practical paths towards quantifying and mitigating agricultural
methane emissions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 481(2309), 20240390. https://doi.org/10.1098/rspa.2024.0390

NOAA (2024). Global CHs Monthly Means, available at: https://gml.noaa.gov/ccgg/trends ch4 /

Palmer, P. I., Wainwright, C. M., Dong, B., Maidment, R. I., Wheeler, K. G., Gedney, N., Hickman, J.
E., Madani, N., Folwell, S. S., Abdo, G., Allan, R. P, Black, E. C. L., Feng, L., Gudoshava, M.,
Haines, K., Huntingford, C., Kilavi, M., Lunt, M. F., Shaaban, A., & Turner, A. G. (2023). Drivers
and impacts of Eastern African rainfall variability. Nature Reviews Earth & Environment, 4(4),
254-270. https://doi.org/10.1038/s43017-023-00397-x

Pandey, S., Houweling, S., Lorente, A., Borsdorff, T., Tsivlidou, M., Bloom, A. A., Poulter, B., Zhang,
Z., & Aben, 1. (2021). Using satellite data to identify the methane emission controls of South
Sudan’s wetlands. Biogeosciences, 18(2), 557-572. https://doi.org/10.5194/bg-18-557-2021

Pendergrass, D. C., Jacob, D. J., Nesser, H., Varon, D. J., Sulprizio, M., Miyazaki, K., & Bowman, K. W.
(2023). CHEEREIO 1.0: A versatile and user-friendly ensemble-based chemical data assimilation
and emissions inversion platform for the GEOS-Chem chemical transport model. Geoscientific
Model Development, 16(16), 4793—4810. https://doi.org/10.5194/gmd-16-4793-2023.

Peng, S., Lin, X., Thompson, R. L., Xi, Y., Liu, G., Hauglustaine, D., Lan, X., Poulter, B., Ramonet, M.,
Saunois, M., Yin, Y., Zhang, Z., Zheng, B., & Ciais, P. (2022). Wetland emission and atmospheric
sink changes explain methane growth in 2020. Nature, 612(7940), 477-482.
https://doi.org/10.1038/s41586-022-05447-w

Penn, E., Jacob, D. J., Chen, Z., East, J. D., Sulprizio, M. P., Bruhwiler, L., Maasakkers, J. D., Nesser,
H., Qu, Z., Zhang, Y., & Worden, J. (2025). What can we learn about tropospheric OH from
satellite observations of methane? Atmospheric Chemistry and Physics, 25(5), 2947-2965.
https://doi.org/10.5194/acp-25-2947-2025

Prather, M. J., Holmes, C. D., & Hsu, J. (2012). Reactive greenhouse gas scenarios: Systematic
exploration of uncertainties and the role of atmospheric chemistry. Geophysical Research Letters,
39(9). https://doi.org/10.1029/2012GL051440

Qu, Z.,Jacob, D. J., Shen, L., Lu, X., Zhang, Y., Scarpelli, T. R., Nesser, H., Sulprizio, M. P., Maasakkers,
J. D., Bloom, A. A., Worden, J. R., Parker, R. J., & Delgado, A. L. (2021). Global distribution of
methane emissions: A comparative inverse analysis of observations from the TROPOMI and
GOSAT satellite instruments. Atmospheric Chemistry and Physics, 21(18), 14159-14175.
https://doi.org/10.5194/acp-21-14159-2021

Qu, Z., Jacob, D. J., Zhang, Y., Shen, L., Varon, D. J., Lu, X., Scarpelli, T., Bloom, A., Worden, J., &
Parker, R. J. (2022). Attribution of the 2020 surge in atmospheric methane by inverse analysis of
GOSAT observations. Environmental Research Letters, 17(9), 094003.
https://doi.org/10.1088/1748-9326/ac8754

26


https://doi.org/10.1029/2023GB007875
https://doi.org/10.1098/rspa.2024.0390
https://gml.noaa.gov/ccgg/trends_ch4
https://doi.org/10.1038/s43017-023-00397-x
https://doi.org/10.5194/bg-18-557-2021
https://doi.org/10.5194/gmd-16-4793-2023
https://doi.org/10.1038/s41586-022-05447-w
https://doi.org/10.5194/acp-25-2947-2025
https://doi.org/10.1029/2012GL051440
https://doi.org/10.5194/acp-21-14159-2021
https://doi.org/10.1088/1748-9326/ac8754

760

765

770

775

780

785

790

795

800

Qu, Z., Jacob, D. J., Bloom, A. A., Worden, J. R., Parker, R. J., & Boesch, H. (2024). Inverse modeling
0f 2010-2022 satellite observations shows that inundation of the wet tropics drove the 2020-2022
methane surge. Proceedings of the National Academy of Sciences, 121(40), ¢2402730121.
https://doi.org/10.1073/pnas.2402730121

Reshetnikov, A. 1., Paramonova, N. N., & Shashkov, A. A. (2000). An evaluation of historical methane
emissions from the Soviet gas industry. Journal of Geophysical Research: Atmospheres, 105(D3),
3517-3529. https://doi.org/10.1029/1999JD900761

Sabbatino, M., Romeo, L., Baker, V., Bauer, J., Barkhurst, A., Bean, A., DiGiulio, J., Jones, K., Jones,
T.J., Justman, D., Miller III, R., Rose, K., and Tong., A., Global Oil & Gas Features Database,
2017-12-12, https://edx.netl.doe.gov/dataset/global-oil-gas-features-database , DOLI:
10.18141/1427300

Saunois, M., Martinez, A., Poulter, B., Zhang, Z., Raymond, P., Regnier, P., Canadell, J. G., Jackson, R.
B., Patra, P. K., Bousquet, P., Ciais, P., Dlugokencky, E. J., Lan, X., Allen, G. H., Bastviken, D.,
Beerling, D. J., Belikov, D. A., Blake, D. R., Castaldi, S., ... Zhuang, Q. (2024). Global Methane
Budget 2000-2020. Earth System Science Data Discussions, 1-147. https://doi.org/10.5194/essd-
2024-115

Scarpelli, T. R., Jacob, D. J., Villasana, C. A. O., Hernandez, 1. F. R., Moreno, P. R. C., Alfaro, E. A. C.,
Garcia, M. A. G., & Zavala-Araiza, D. (2020). A gridded inventory of anthropogenic methane
emissions from Mexico based on Mexico’s national inventory of greenhouse gases and
compounds. Environmental Research Letters, 15(10), 105015. https://doi.org/10.1088/1748-
9326/abb42b

Scarpelli, T. R., Jacob, D. J., Moran, M., Reuland, F., & Gordon, D. (2021). A gridded inventory of
Canada’s anthropogenic methane emissions. Environmental Research Letters, 17(1), 014007.
https://doi.org/10.1088/1748-9326/ac40b1

Scarpelli, T. R., Jacob, D. J., Grossman, S., Lu, X., Qu, Z., Sulprizio, M. P., Zhang, Y., Reuland, F.,
Gordon, D., & Worden, J. R. (2022). Updated Global Fuel Exploitation Inventory (GFEI) for
methane emissions from the oil, gas, and coal sectors: Evaluation with inversions of atmospheric
methane  observations.  Atmospheric  Chemistry and Physics, 22(5), 3235-3249.
https://doi.org/10.5194/acp-22-3235-2022

Shaw, J. T., Allen, G., Barker, P., Pitt, J. R., Pasternak, D., Bauguitte, S. J.-B., Lee, J., Bower, K. N.,
Daly, M. C., Lunt, M. F., Ganesan, A. L., Vaughan, A. R., Chibesakunda, F., Lambakasa, M.,
Fisher, R. E., France, J. L., Lowry, D., Palmer, P. 1., Metzger, S., ... Nisbet, E. G. (2022). Large
Methane Emission Fluxes Observed From Tropical Wetlands in Zambia. Global Biogeochemical
Cycles, 36(6), ¢2021GB007261. https://doi.org/10.1029/2021GB007261

Smith, C.G., Hurst, H.E., El-Kammash, M.M. (2025). Nile River. Encyclopedia Britannica.
https://www.britannica.com/place/Nile-River

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M.,
van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., & Kasibhatla, P. S. (2017).
Global fire emissions estimates during 1997-2016. Earth System Science Data, 9(2), 697-720.
https://doi.org/10.5194/essd-9-697-2017

Vanselow, S., Schneising, O., Buchwitz, M., Reuter, M., Bovensmann, H., Boesch, H., & Burrows, J. P.
(2024). Automated detection of regions with persistently enhanced methane concentrations using

27


https://doi.org/10.1073/pnas.2402730121
https://doi.org/10.1029/1999JD900761
https://doi.org/10.5194/essd-2024-115
https://doi.org/10.5194/essd-2024-115
https://doi.org/10.1088/1748-9326/abb42b
https://doi.org/10.1088/1748-9326/abb42b
https://doi.org/10.5194/acp-22-3235-2022
https://doi.org/10.1029/2021GB007261
https://doi.org/10.5194/essd-9-697-2017

805

810

815

820

825

830

835

840

Sentinel-5 Precursor satellite data. Atmospheric Chemistry and Physics, 24(18), 10441-10473.
https://doi.org/10.5194/acp-24-10441-2024

Varon, D. J., Jacob, D. J., Estrada, L. A., Balasus, N., East, J., Pendergrass, D. C., Chen, Z., Sulprizio, M.
P., Omara, M., Gautam, R., Barkley, Z. R., Cardoso-Saldafa, F. J., Reidy, E. K., Kamdar, H.,
Sherwin, E. D., Biraud, S., Jervis, D., Pandey, S., Worden, J., ... Kleinberg, R. L. (2025).
Seasonality and declining intensity of methane emissions from the Permian and nearby US oil and
gas basins. https://eartharxiv.org/repository/view/9533/

Wainwright, C. M., Finney, D. L., Kilavi, M., Black, E., & Marsham, J. H. (2021). Extreme rainfall in
East Africa, October 2019—January 2020 and context under future climate change. Weather, 76(1),
26-31. https://doi.org/10.1002/wea.3824

Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q., Alexander, B., Sherwen, T.,
Evans, M. J., Lee, B. H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Huey, G. L., &
Liao, H. (2019). The role of chlorine in global tropospheric chemistry. Atmospheric Chemistry
and Physics, 19(6), 3981-4003. https://doi.org/10.5194/acp-19-3981-2019

Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., & Landerer, F. W. (2015). Improved methods
for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons.
Journal of  Geophysical Research: Solid Earth, 120(4), 2648-2671.
https://doi.org/10.1002/2014JB011547

Wecht, K. J., Jacob, D. J., Frankenberg, C., Jiang, Z., & Blake, D. R. (2014). Mapping of North American
methane emissions with high spatial resolution by inversion of SCIAMACHY satellite data.
Journal of Geophysical Research: Atmospheres, 119(12), 7741-7756.
https://doi.org/10.1002/2014JD021551

West, J. J., Fiore, A. M., Horowitz, L. W., & Mauzerall, D. L. (2006). Global health benefits of mitigating
ozone pollution with methane emission controls. Proceedings of the National Academy of
Sciences, 103(11), 3988—-3993. https://doi.org/10.1073/pnas.0600201103

Whitaker, J. S., & Hamill, T. M. (2012). Evaluating Methods to Account for System Errors in Ensemble
Data Assimilation. Monthly Weather Review, 140(9), 3078—3089. https://doi.org/10.1175/MWR-
D-11-00276.1

Wiese, D. N., Landerer, F. W., & Watkins, M. M. (2016). Quantifying and reducing leakage errors in the
JPL RLO5SM GRACE mascon solution. Water Resources Research, 52(9), 7490-7502.
https://doi.org/10.1002/2016WR019344

Wiese, D. N., D.-N. Yuan, C. Boening, F. W. Landerer, M. M. Watkins. 2023. JPL. GRACE and GRACE-
FO Mascon Ocean, Ice, and Hydrology Equivalent Water Height CRI Filtered RL06.3Mv04. Ver.
RL06.3Mv04. PO.DAAC, CA, USA. Dataset  accessed [2025-02-07] at
https://doi.org/10.5067/ TEMSC-3JC634

Yin, Y., F. Chevallier, P. Ciais, P. Bousquet, M. Saunois, B. Zheng, J. Worden, A. A. Bloom, R. Parker,
D.J. Jacob, E.J. Dlugokencky, and C. Frankenberg, Accelerating methane growth rate from 2010
to 2017: leading contributions from the tropics and East Asia, Atmos. Chem. Phys., 21, 12631-
12647, https://doi.org/10.5194/acp-21-12631-2021 , 2021.

Yu, X., Millet, D. B., & Henze, D. K. (2021). How well can inverse analyses of high-resolution satellite
data resolve heterogeneous methane fluxes? Observing system simulation experiments with the

28


https://doi.org/10.5194/acp-24-10441-2024
https://eartharxiv.org/repository/view/9533/
https://doi.org/10.1002/wea.3824
https://doi.org/10.5194/acp-19-3981-2019
https://doi.org/10.1002/2014JB011547
https://doi.org/10.1002/2014JD021551
https://doi.org/10.1073/pnas.0600201103
https://doi.org/10.1175/MWR-D-11-00276.1
https://doi.org/10.1175/MWR-D-11-00276.1
https://doi.org/10.1002/2016WR019344
https://doi.org/10.5067/TEMSC-3JC634

845

850

855

860

GEOS-Chem adjoint model (v35). Geoscientific Model Development, 14(12), 7775-7793.
https://doi.org/10.5194/gmd-14-7775-2021

Yu, X., Millet, D. B., Henze, D. K., Turner, A. J., Delgado, A. L., Bloom, A. A., & Sheng, J. (2023). A
high-resolution satellite-based map of global methane emissions reveals missing wetland, fossil
fuel, and monsoon sources. Atmospheric Chemistry and Physics, 23(5), 3325-3346.
https://doi.org/10.5194/acp-23-3325-2023

Zhang, B., Tian, H., Ren, W., Tao, B., Lu, C., Yang, J., Banger, K., & Pan, S. (2016a). Methane emissions
from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls. Global
Biogeochemical Cycles, 30(9), 1246—1263. https://doi.org/10.1002/2016GB005381

Zhang, 7., Zimmermann, N. E., Kaplan, J. O., & Poulter, B. (2016b). Modeling spatiotemporal dynamics
of global wetlands: Comprehensive evaluation of a new sub-grid TOPMODEL parameterization
and uncertainties. Biogeosciences, 13(5), 1387-1408. https://doi.org/10.5194/bg-13-1387-2016

Zhang, Y., Jacob, D. J., Lu, X., Maasakkers, J. D., Scarpelli, T. R., Sheng, J.-X., Shen, L., Qu, Z.,
Sulprizio, M. P., Chang, J., Bloom, A. A., Ma, S., Worden, J., Parker, R. J., & Boesch, H. (2021).
Attribution of the accelerating increase in atmospheric methane during 2010-2018 by inverse
analysis of GOSAT observations. Atmospheric Chemistry and Physics, 21(5), 3643-3666.
https://doi.org/10.5194/acp-21-3643-2021

Zhu, S., Feng, L., Liu, Y., Wang, J., & Yang, D. (2022). Decadal Methane Emission Trend Inferred from
Proxy GOSAT XCH4 Retrievals: Impacts of Transport Model Spatial Resolution. Advances in
Atmospheric Sciences, 39(8), 1343—1359. https://doi.org/10.1007/s00376-022-1434-6

29


https://doi.org/10.5194/bg-13-1387-2016
https://doi.org/10.5194/acp-21-3643-2021
https://doi.org/10.1007/s00376-022-1434-6

