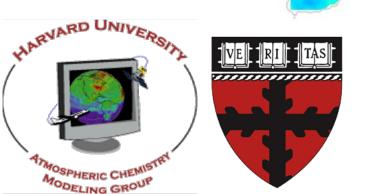
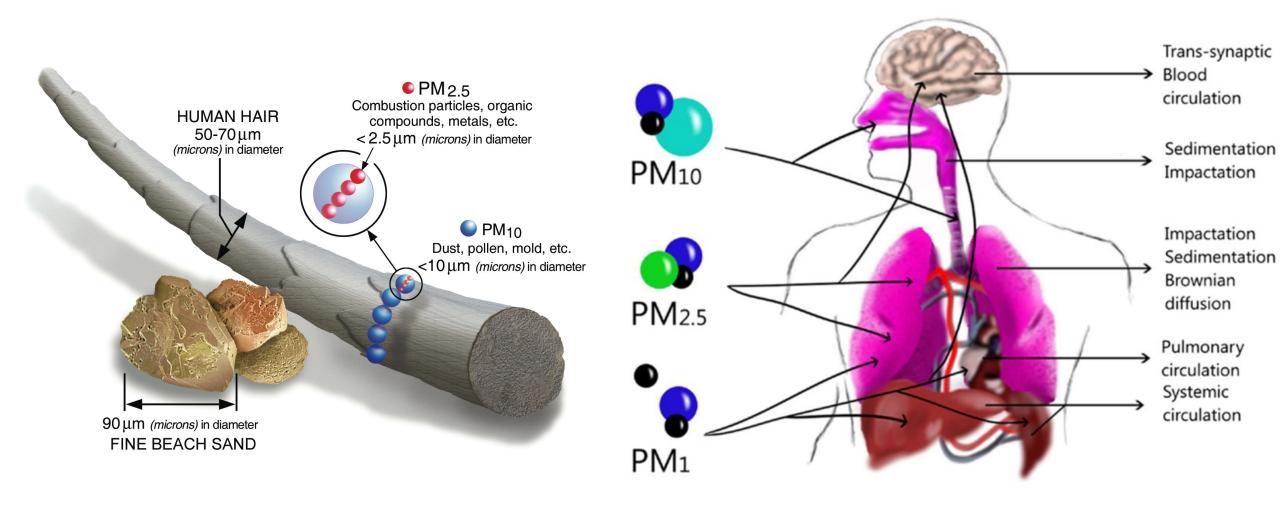
Using machine learning to map fine particulate matter air quality in East Asia

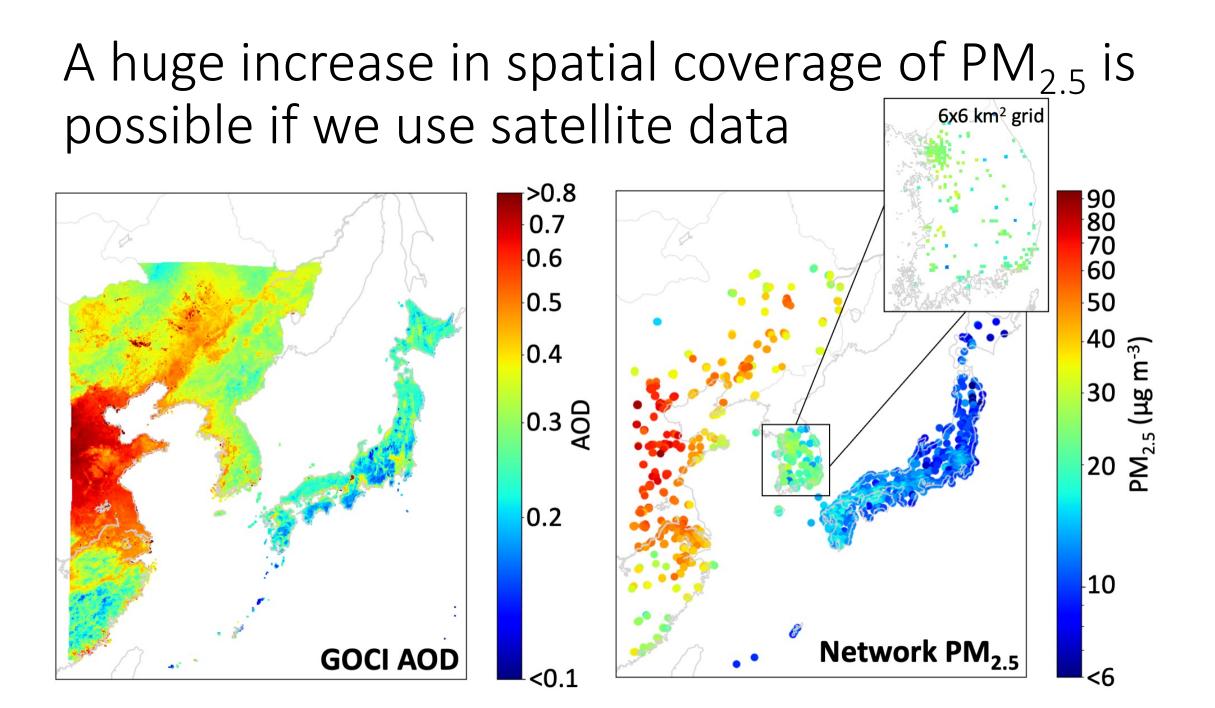
Drew Pendergrass | AGU Fall Meeting 2021

with Daniel Jacob, Shixian Zhai, Jhoon Kim, Ja-Ho Koo, Seoyoung Lee, Minah Bae, and Soontae Kim



Why care about fine particulate matter?

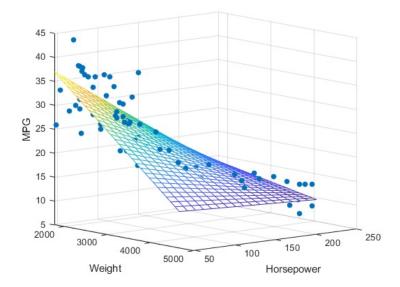




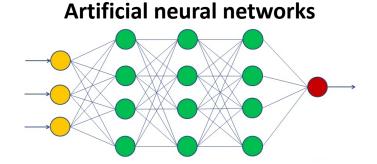
Linking satellite AOD to surface $\rm PM_{2.5}$ is challenging

Chemical transport models

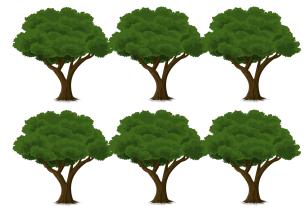
Multi-linear regression



Machine learning

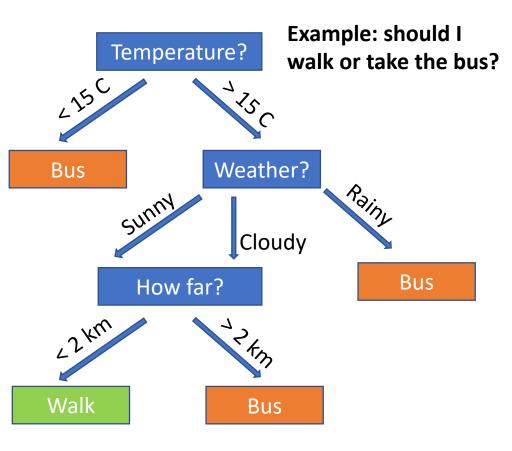


Random forests



Our algorithm choice: random forest machine learning method

A random forest is an ensemble of uncorrelated *decision trees*...



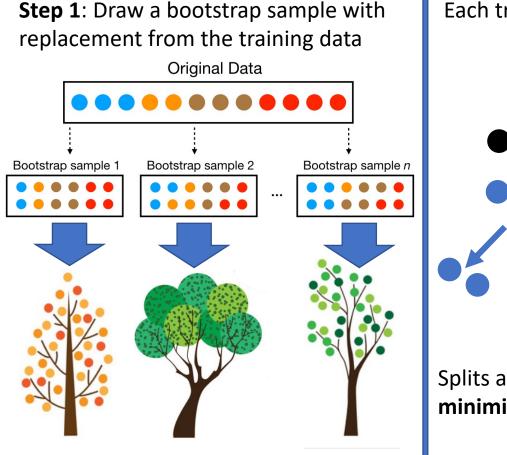
...trained on a series of input vectors \vec{x} each with target value y...

1.4 : $\rightarrow 2.3$ 1 : $\rightarrow 6.3$ 7 : 3 -0- $\rightarrow 1.2$ 3.5 $\rightarrow 4.7$

...that average their predicted \hat{y} made from the same input data Input: \vec{x} $\hat{\mathbf{v}} = \mathbf{3}$ $\widehat{\mathbf{v}} = \mathbf{0}$ $\widehat{\mathbf{v}} = 2$ = 2

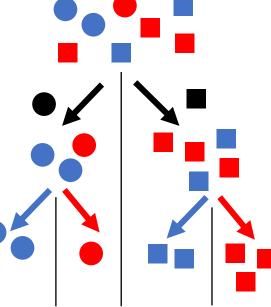
Random forest predicts 1.83

What makes the random forest random? And why does it work?



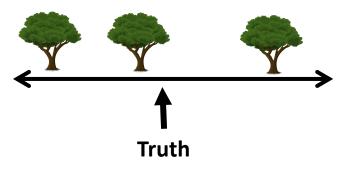
Step 2: Grow different decision trees for each bootstrap sample

Each tree is trained **recursively**



Splits at each phase in training **minimize error**

Splits chosen are **highly sensitive** to input data **Step 3**: Average tree output to make prediction.



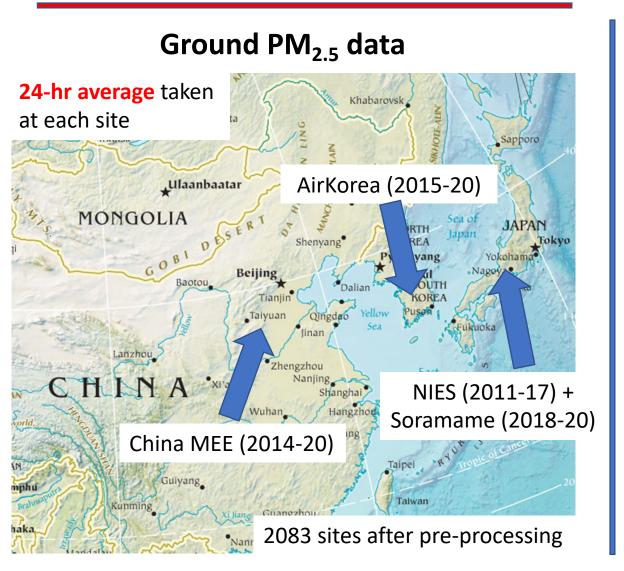
Trees make a wide variety of guesses but on average they are **unbiased**.

Averaging many trees should give an accurate estimate.

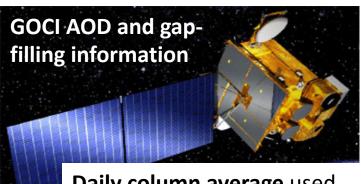
Data sources for training algorithm

Target value y

Input vector \vec{x}



Remote/reanalysis data



Daily column average used, missing data removed

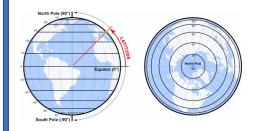
ERA5 quarter degree products:

- Relative humidity
- Surface u/v wind
- 2m temperature
- Sea level pressure
- Boundary layer height

Other data

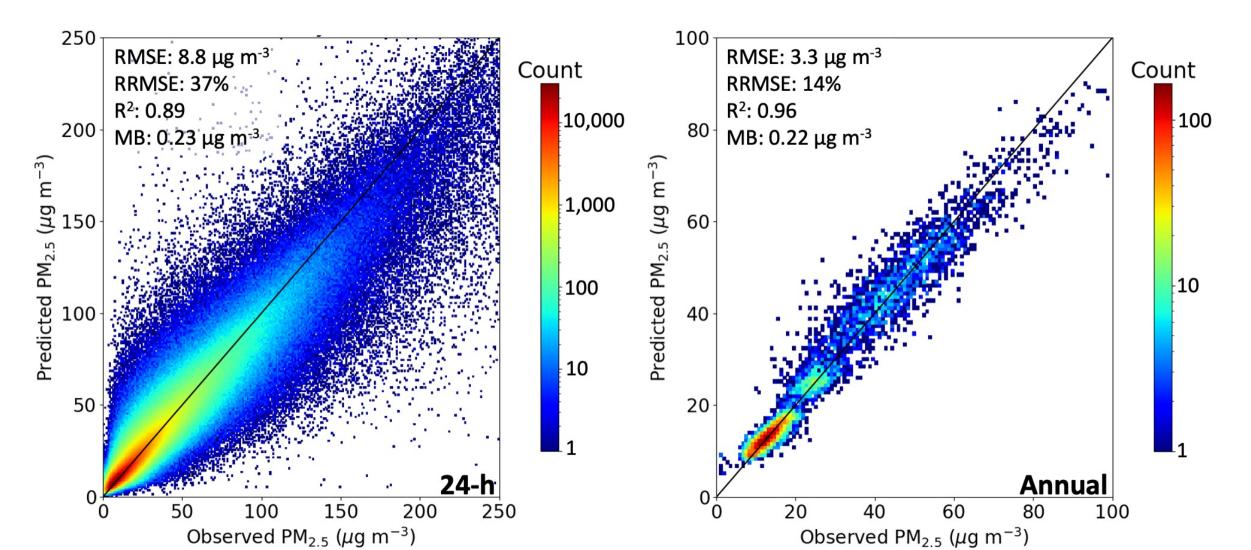
Day of year to capture seasonality

Nation

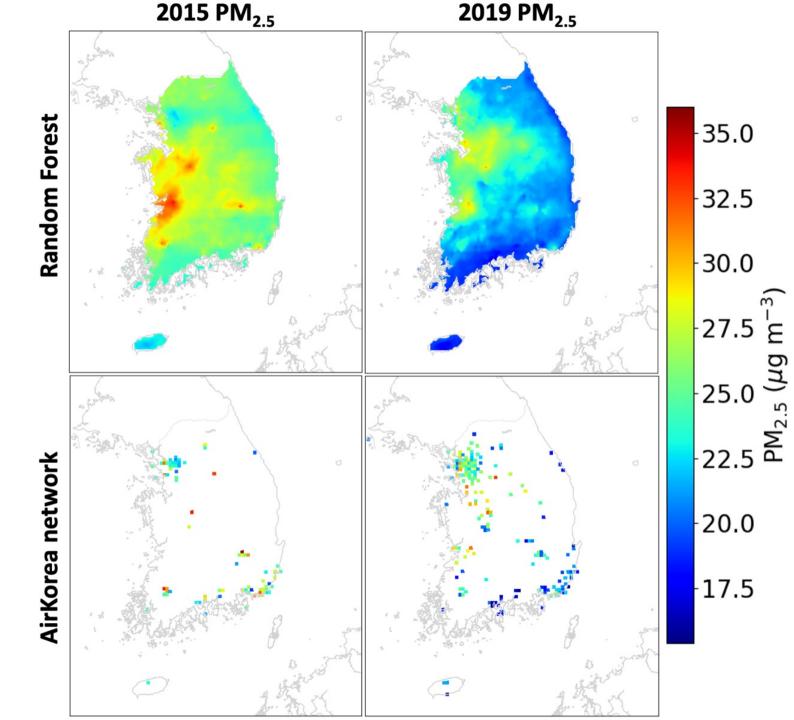


Latitude

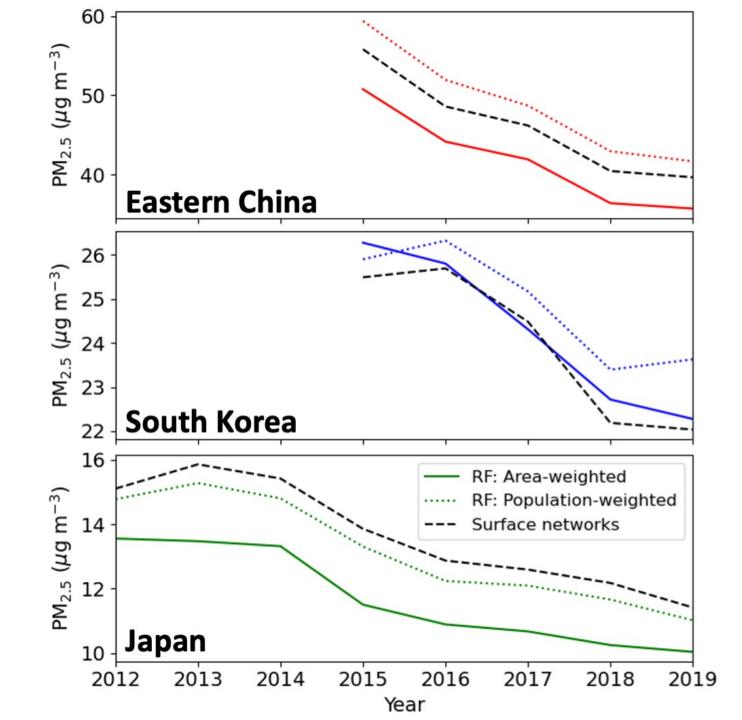
Accuracy on both daily and annual resolution compares favorably to the literature



Coverage is much improved and reveals pollution hotspots

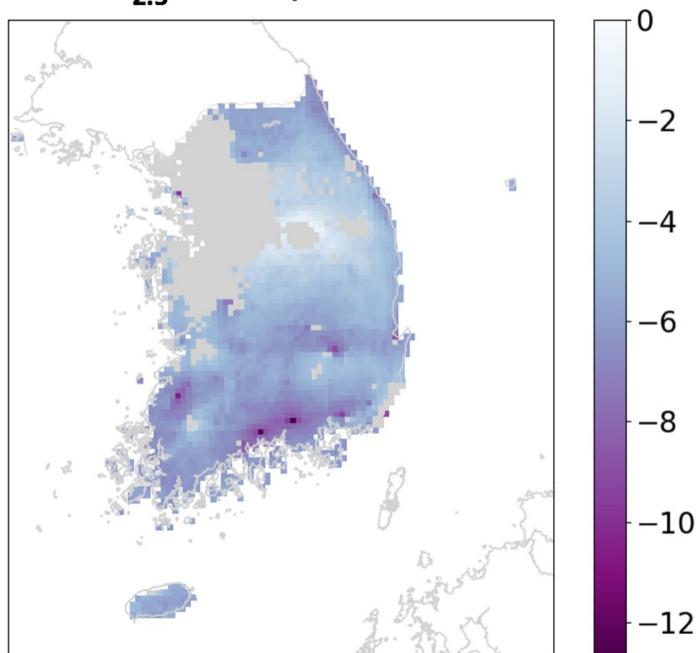


Expanding coverage offers new perspective on annual trends

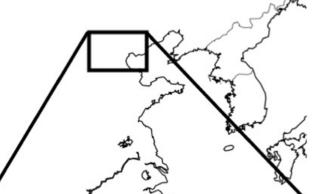


PM_{2.5} trends, 2015-2019

Fine particulate matter decreases throughout South Korea, but no trend in Seoul despite emissions controls



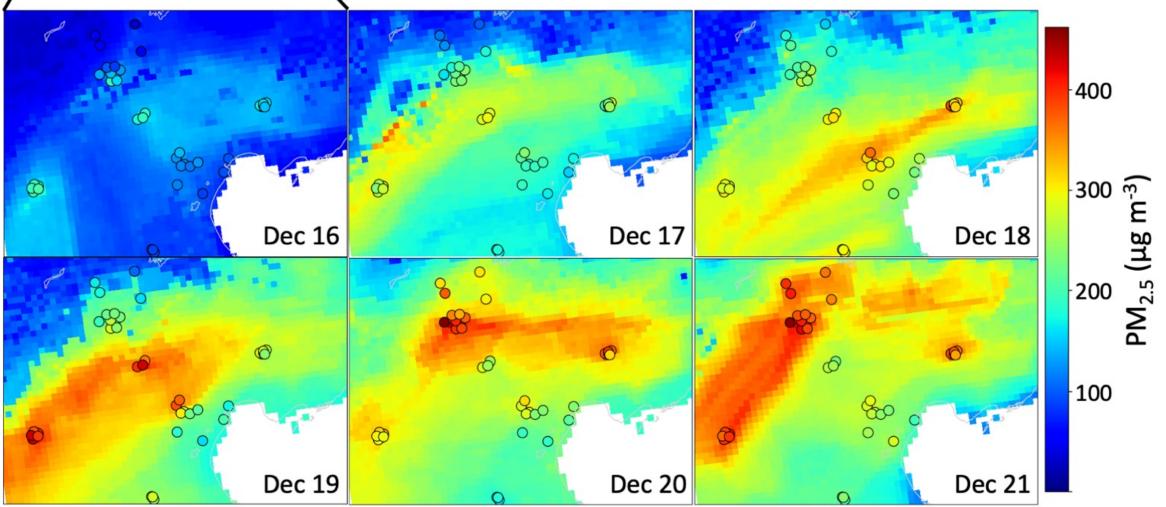
 ΔPM_2



North China Plain pollution episode Dec 16-21, 2016

RF prediction (background), PM_{2.5} network (circles)

Beijing spatial R² = 0.86 on 6x6 km² grid scale



Conclusions

- Random forest accurate but has trouble predicting very low and especially very high PM_{2.5} days
 - Further work will be needed to increase resolution and reduce tail bias
- PM_{2.5} concentrations predicted by the RF algorithm for individual countries show steady 2015-2019 declines consistent with surface networks
- Further examination of RF results for South Korea shows general 2015-2019 PM_{2.5} decreases across South Korea except for flat concentrations in Seoul

