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Abstract. We use 2011-2019 aerosol optical depth (AOD) observations from the Geostationary Ocean 
Color Imager (GOCI) instrument over East Asia to infer 24-h daily surface fine particulate matter 
(PM2.5) concentrations at continuous 6x6 km2 resolution over eastern China, South Korea, and Japan. 
This is done with a random forest (RF) algorithm applied to the gap-filled GOCI AODs and other data 
and trained with PM2.5 observations from the three national networks. The predicted 24-h PM2.5 15 
concentrations for sites entirely withheld from training in a ten-fold crossvalidation procedure correlate 
highly with network observations (R2 = 0.89) with single-value precision of 26-32% depending on 
country. Prediction of annual mean values has R2 = 0.96 and single-value precision of 12%. The RF 
algorithm is only moderately successful for diagnosing local exceedances of the National Ambient Air 
Quality Standard (NAAQS) because these exceedances are typically within the single-value precisions 20 
of the RF, and also because of RF smoothing of extreme PM2.5 concentrations. The area-weighted and 
population-weighted trends of RF PM2.5 concentrations for eastern China, South Korea, and Japan show 
steady 2015-2019 declines consistent with surface networks, but the surface networks in eastern China 
and South Korea underestimate population exposure. Further examination of RF PM2.5 fields for South 
Korea identifies hotspots where surface network sites were initially lacking and shows 2015-2019 PM2.5 25 
decreases across the country except for flat concentrations in the Seoul metropolitan area. Inspection of 
monthly PM2.5 time series in Beijing, Seoul, and Tokyo shows that the RF algorithm successfully 
captures observed seasonal variations of PM2.5 even though AOD and PM2.5 often have opposite 
seasonalities. Application of the RF algorithm to urban pollution episodes in Seoul and Beijing 
demonstrates high skill in reproducing the observed day-to-day variations in air quality as well as 30 
spatial patterns on the 6 km scale. Comparison to a CMAQ simulation for the Korean peninsula 
demonstrates the value of the continuous RF PM2.5 fields for testing air quality models, including over 
North Korea where they offer a unique resource.  
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1. Introduction 

Exposure to outdoor fine particulate matter (PM2.5) is a global public health issue, accounting for 8.9 35 
million deaths in 2015 [Burnett et. al., 2018]. Beyond mortality, short-term exposure to elevated PM2.5 
levels is associated with numerous adverse health outcomes including increased hospital admissions for 
respiratory and cardiovascular issues [Dominici et. al., 2006; Wei et. al., 2019]. Long-term exposure is 
associated with neurodegenerative diseases such as dementia, Alzheimer’s disease, and Parkinson’s 
disease [Kioumourtzoglou et. al., 2016]. High spatio-temporal monitoring of PM2.5 concentrations to 40 
inform population exposure is important for both air quality regulation and epidemiological studies. 
Ground monitors can provide highly accurate measurements but have limited spatial coverage. Here we 
show how geostationary satellite observations of aerosol optical depth (AOD) over East Asia from the 
Geostationary Ocean Color Imager (GOCI) can be used with a random forest (RF) machine learning 
(ML) algorithm to provide continuous long-term reliable mapping of 24-h PM2.5 at 6x6 km2 spatial 45 
resolution.   

The potential of satellites for high-resolution monitoring of PM2.5 has long been recognized in 
the public health community [Liu et al., 2004; van Donkelaar et. al., 2006]. Satellites retrieve AOD by 
backscatter of solar radiation. The MODIS sensors launched in 1999 on the NASA Terra and Aqua 
satellites have been the main source of AOD data, with global coverage twice a day at up to 1 km 50 
resolution [Remer et. al., 2005, 2013; Lyapustin et. al., 2018]. Early approaches to relate AOD 
observations to surface PM2.5 used chemical transport models (CTMs) to estimate local PM2.5/AOD 
ratios [Liu et al., 2004; van Donkelaar et. al., 2006], with more recent studies adding ancillary satellite 
data on the vertical distribution of aerosol extinction [Geng et. al., 2015; van Donkelaar et. al., 2016; 
van Donkelaar et. al., 2019]. Other approaches have used PM2.5 network data to infer PM2.5/AOD ratios 55 
[Wang and Christopher, 2003], with statistical models based on meteorological and land-use predictor 
variables to enable spatial extrapolation [Gupta and Christopher, 2009; Liu et. al., 2009; Kloog et. al., 
2012; 2014]. More recently, non-parametric machine learning models have been developed to predict 
PM2.5 from satellite AOD observations including neural networks [Li et. al., 2017; Zang et. al., 2019] 
and RFs [Hu et. al., 2017; Brokamp et. al., 2018]. 60 

Geostationary satellites are now dramatically increasing the capability for mapping of PM2.5 
from space. The GOCI instrument launched in 2010 by the Korea Aerospace Research Institute (KARI) 
observes AOD eight times daily at 0.5x0.5 km2 pixel resolution over eastern China, the Korean 
peninsula, and Japan [Choi et. al., 2018]. The fine-pixel hourly information is intrinsically valuable and 
also facilitates cloud clearing [Remer et al., 2012]. GOCI AOD data aggregated to 6x6 km2 resolution 65 
have been used to estimate PM2.5 in regional studies for eastern China and South Korea [Xu et al., 2015; 
Park et al., 2019; She et. al., 2020]. 

AODs cannot be observed under cloudy conditions, and AOD retrievals can also fail for other 
reasons including snow surfaces. Different methods have been used to fill the gaps and produce 
continuous data sets. Some studies use CTM AODs when satellite data are missing [Hu et. al., 2017; 70 
Stafoggia et. al., 2019]. Others use a statistical interpolation algorithm such as Kianian et. al. [2021], 
who combined a RF with the lattice kriging method to infer missing AOD over the US. Yet others first 
estimate PM2.5 using available AOD observations, then infer missing PM2.5 estimates using a separate 
gap-filling model [Kloog et. al., 2014; She et. al., 2020].  
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Here we apply a RF algorithm to 2011-2019 GOCI AOD data to construct a continuous dataset 75 
of 24-h PM2.5 concentrations at 6x6 km2 resolution for eastern China, South Korea, and Japan trained 
with the surface network data. Our AOD gap-filling strategy blends CTM information and statistical 
interpolation with a strategy determined by the RF algorithm. We characterize the error in the RF- 
produced dataset for both 24-h and annual PM2.5 concentrations and demonstrate the ability of the 
dataset to capture spatial and day-to-day variability on urban scales. We exploit the continuity of the 80 
dataset to determine trends of PM2.5 air quality in East Asia over the past half decade.  

2 Data and methods 

2.1 Datasets 

GOCI AODs. GOCI is onboard the Korean Communication, Ocean, and Meteorological Satellite 
(COMS) that was launched by KARI in June 2010 [Choi et. al., 2012; Choi et. al., 2016]. The first 85 
ocean color imager placed in geostationary orbit, GOCI covers a 2,500x2,500 km2 domain centered on 
the Korean peninsula at 36ºN and 130ºE with 0.5x0.5 km2 pixels observed every hour from 00:30 to 
07:30 UTC. AOD at 550 nm over land is retrieved using the GOCI Yonsei aerosol retrieval (YAER) V2 
algorithm at an aggregated 6x6 km2 spatial resolution and 1 h temporal resolution [Choi et. al., 2018]. 
Aggregation filters out pixels affected by sunglint or clouds, as well as the darkest 20% and brightest 90 
40% pixels within the 6x6 km2 scene [Choi et. al., 2018]. We further aggregate the 8x daily 
measurements of AOD into a daily (8-hr) mean for use in the RF. 

Validation of the GOCI YAER V2 AOD with surface measurements from the AERONET 
surface network shows high correlation (𝑅 = 0.91), a root mean squared error (RMSE) of 0.16, and a 
mean bias (MB) of 0.01 [Choi et. al., 2018]. GOCI YAER V2 also reports a Fine Mode Fraction (FMF) 95 
and a Multiple Prognostic Expected Error (MPEE) for the AOD but we find that they are not useful in 
our RF, as discussed later. For comparison, we also calculate a RF trained on the GOCI-AHI fusion 
AOD product of Lim et. al. [2021]. The Advanced Himawari Imager (AHI) instruments onboard the 
Himawari-8 and -9 geostationary meteorological satellites were launched in October 2014 and 
November 2016 respectively. AHI has a larger field of view than GOCI but a shorter record. 100 
  

PM2.5 network data.  We use hourly PM2.5 data from operational air quality networks in eastern 
China, South Korea, and Japan, and average them over 24 hours and over the 6x6 km2 GOCI AOD grid 
to define targets for the RF algorithm. Data for eastern China are from the National Environmental 
Monitoring Center (https://quotsoft.net/air/) including 443 sites within the GOCI observing domain 105 
starting in May 2014 and increasing to 596 sites by 2019. Following Zhai et. al. [2019] we remove 
values with more than 24 consecutive repeats in the hourly timeseries as likely in error. Data for South 
Korea are from the AirKorea surface network of 123 sites (https://www.airkorea.or.kr/) starting in 
January 2015 and increasing to 298 sites by 2019. Data for Japan are from 1054 sites reported by the 
Japanese National Institute for Environmental Studies (NIES) for 2011-2017 110 
(https://www.nies.go.jp/igreen/tj_down.html) and by the real-time Atmospheric Environmental 
Regional Observation System (AEROS) portal for 2018-2019 (Soramame; 
http://soramame.taiki.go.jp/DownLoad.php). 
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 115 
Figure 1: Mean aerosol optical depth (AOD) and PM2.5 concentrations over the Geostationary Ocean Color Imager (GOCI) viewing 
domain, 2011-2019.  The left panel shows mean GOCI AOD data on the 6x6 km2 grid. The right panel shows the mean surface network 
PM2.5 data for eastern China (starting in May 2014), South Korea (starting in January 2015), and Japan, using large data symbols for 
visibility. Zoomed inset for South Korea shows the surface network observations with symbols corresponding to the 6x6 km2 grid of the 
GOCI data. Log scale used for colorbar. 120 

Meteorological and geographical predictor variables. We use hourly meteorological data from the 
ERA5 global reanalysis, with resolution of 30x30 km2 [Hersbach et. al., 2020], as input predictor 
variables for the RF algorithm. For this purpose we aggregate the data to 24-h averages and allocate 
them to 6x6 km2 GOCI grid cells by bilinear interpolation. We consider boundary layer height, 2-m air 
temperature and relative humidity (RH), 10-m meridional and zonal winds, and sea level pressure as 125 
potential meteorological predictor variables. We also include as geographical predictor variables 
latitude, year, day of year (1-366), and nation category (eastern China, South Korea, or Japan). We also 
considered 2015 population density [CIESIN, 2018] as a potential predictor variable but find that it is 
not useful as discussed in section 3.2. 
 130 

Figure 1 shows the mean distributions of GOCI AOD and surface network PM2.5 for 2011-2019 
or for the more limited durations of their records (2014-2019 for eastern China PM2.5, 2015-2019 for 
South Korea PM2.5). The PM2.5 networks are extensive but coverage is nevertheless sparse and often 
limited to large urban areas, as illustrated by the zoomed inset for South Korea. We find that only 1.0% 
of GOCI 6x6 km2 grid cells have PM2.5 observations in eastern China, 7.4% in South Korea, and 7.9% 135 
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in Japan. This geographic limitation in the PM2.5 networks emphasizes the value of continuous coverage 
from the AOD data.  

2.2 AOD gap-filling 

Figure 2: Percentage of days in 2011-2019 with at least one successful hourly retrieval of AOD on the 6x6 km2 grid. The left panel shows 140 
year-round statistics while the right panel shows winter months (DJF) only. 

Figure 2 shows the percentage of days with at least one successful hourly GOCI AOD retrieval 
on the 6x6 km2 retrieval grid. There are substantial gaps in the record, mostly reflecting clouds and also 
snow cover in winter [Choi et. al., 2018]. We seek to fill in these gaps to produce a continuous daily 
data set while accounting for the associated errors. We fuse two strategies according to the availability 145 
of nearby AOD retrievals: an inverse distance weighted (IDW) interpolation AODIDW of nearby 
retrievals [Shepard, 1968] and a bias-corrected monthly AODGC from the GEOS-Chem CTM: 
 
 AOD = 𝛼	AOD!"# + (1 − 𝛼)AOD$%	 (1) 

 
where α is a weighting factor that depends on the distance from nearest retrievals. GEOS-Chem is a 150 
widely used CTM for inferring PM2.5 from satellite AOD data [Liu et al., 2004; van Donkelaar et. al., 
2006; 2016; 2019; Geng et. al., 2015]. Here we use scaled monthly mean GEOS-Chem AODs from a 
simulation by Zhai et al. [2021] for 2016 in East Asia with 0.5ox 0.625o resolution. That simulation 
reported a low mean bias relative to AERONET; we correct this for each year in the study period by 
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using annual mean GOCI AODs on the 6x6 km2 grid. In this way we obtain a spatial distribution of 155 
monthly mean AODGC values for 2011-2019 for use in equation (1).  

We calculate the weighting factors 𝛼 used in Equation (1) via the Gaspari-Cohn function, a fifth-
order piecewise polynomial with a radial argument 𝑟 [Gaspari and Cohn, 1999]. The Gaspari-Cohn 
function resembles a Gaussian distribution but with compact support, taking on a maximum value of 1 
for 𝑟 = 0 and a minimum value of 0 for 𝑟 ≥ 2. We define 𝑟 = l/c for a given 6x6 km2 grid cell and day 160 
to be the distance l from the midpoint of the grid cell to that of the nearest observed grid cell, 
normalized by a spatial correlation length scale 𝑐 determined from available AOD observations in and 
around that grid cell. We find that the value of c ranges from 110 km to 170 km over our domain.  

2.3 Random forest algorithm  

Table 1 lists the predictor variables included in the RF to infer 24-h PM2.5 as dependent variable. RF is 165 
an ensemble machine learning method where many individual decision trees are fit to the training data 
and vote on an output value, with the average value taken as best estimate [Breiman, 2001].  
 
Table 1. Random Forest predictor variables for 24-h PM2.5a 

GOCI gap-filled AOD observationsb 
     8-h average AOD at 550 nm wavelength 
     𝛼 from Equation 1 
Meteorologyc 
     Boundary layer height (m) 
     10-m meridional wind (m s-1) 
     10-m zonal wind (m s-1) 
     2-m temperature (K) 
     2-m relative humidityd (%) 
     Sea-level pressure (Pa) 
Metadata 
     Country dummy variablese 
     Latitude 
     Day of year 
     Year 

aThe RF algorithm predicts continuous 24-h PM2.5 on a 6x6 km2 grid for eastern China, South Korea, and Japan after training with PM2.5 
surface network data. 170 
b8-hr average 550 nm AODs on the 6x6 km2 grid retrieved with the YAER v2 algorithm [Choi et al., 2018] 
c ECMWF ERA5 fields [Hersbach et. al., 2020] at 30x30 km2 spatial resolution and hourly temporal resolution, interpolated bilinearly to 
the GOCI grid and averaged over 24 hours. 
d Estimated from temperature and dewpoint using the August-Roche-Magnus approximation [Alduchov and Eskridge, 1996]. 
eThree variables that, for each of eastern China, South Korea, and Japan, has value 1 if a grid cell is within those national borders and 0 175 
otherwise. 
 
Decision trees are fit recursively to the predictor variable. Suppose we have a collection of N data 
elements i ∈ [1, N], denoted 𝑥&, each composed of m predictor variables (𝑥& ∈ ℝ'), and a corresponding 
list of N labels yi that we would like to learn. In our case yi denotes the observed PM2.5 concentrations 180 
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from the surface networks averaged on the 6x6 km2 grid, and N denotes the number of these 
observations. The algorithm works by splitting the data into left and right subsets L and R at an 
optimum split point determined from the predictor variables in 𝑥& [Pedregosa et. al., 2011]. The 
optimum split point is defined as the one that minimizes the impurity G, 
 𝐺(𝐿, 𝑅) = 𝛽 ⋅ MSE(𝐿) + (1 − 𝛽) ⋅ MSE(𝑅) (2) 

where 𝛽 represents the fraction of data in the subset L and MSE represents the mean squared error of 185 
each of the subsets, 
 MSE(𝑋) =

1
𝑛A (𝑦& − 𝑦C)(

&
 

(3) 

where 𝑦C is the mean of the target labels within a given subset 𝑋 and n is the number of elements in that 
subset. From there the same algorithm is recursively applied to the left and right subsets L and R until 
the tree is grown. We follow the advice of Hastie et. al. [2009] and grow trees until the data are fully 
classified (each leaf contains only one value).   190 

Due to the recursive training structure, decision trees are sensitive to the data on which they are 
trained, because a change in one split point changes the composition of all its child nodes. Individual 
decision trees thus have high error variance but no inherent bias. It follows that averaging many 
individual and uncorrelated trees should yield a low variance, low bias prediction. We construct 200 
trees in parallel and reduce correlation between them through a bagging procedure: for each of the 200 195 
decision trees in the RF, sample the input data with replacement to form a new dataset of the same 
dimensions and then grow a decision tree from this bootstrapped data [Breiman, 2001]. Because of the 
high input sensitivity, a wide variety of decorrelated trees are grown. The predictions of each individual 
tree are averaged to yield the prediction of the RF. We fit our RF using the RandomForestRegression 
class in the Python module Scikit-learn [Pedregosa et. al., 2011]. We attempted to further decorrelate 200 
trees by following Breiman [2001] and calculating split points of each individual tree using only a 
random subset of the m predictor variables; however, a sensitivity test we performed showed only minor 
differences with the base case and therefore we follow Guerts et. al. [2006] in considering all predictor 
variables in the training process. 

We evaluate how the RF generalizes to predictions for the full 6x6 km2 domain via a 10-fold 205 
crossvalidation. For each fold of the crossvalidation, we leave out 10% of PM2.5 network sites (averaged 
on the 6x6 km2 grid if needed) from each country. These 10% represent the test set; because we perform 
the validation ten times, each grid cell is in the test set exactly once. We compare predicted PM2.5 to 
withheld observed PM2.5 using four metrics: root mean square error (RMSE); the RMSE divided by 
mean observed PM2.5 (relative RMSE, or RRMSE); the coefficient of variation (R2); and the mean bias 210 
computed by averaging the difference between predicted and observed PM2.5 (MB).  

An outcome of interest is the ability of our predictions to capture exceedances of National 
Ambient Air Quality Standards (NAAQS). We categorize each prediction within the test sets into one of 
four classes: true positives (TP) where both predicted and observed PM2.5 exceed the NAAQS 
threshold; true negatives (TN) where neither exceed the threshold; false positives (FP) where an 215 
exceedance is predicted but not observed; and false negatives (FN) where an exceedance is observed but 
not predicted [Brasseur and Jacob, 2017; Cusworth et. al., 2018]. We use these classes to compute 



8 
 

three overall prediction grades. The first, percent of detection (POD), gives the fraction of observed 
exceedances that were successfully predicted: 

 220 
 POD =

Σ	TP
Σ	TP + Σ	FN 

(4) 

 
The second, false alarm ratio (FAR), gives the fraction of predicted exceedances that did not occur: 
 
 FAR =

Σ	FP
Σ	TP + Σ	FP 

(5) 

 
The third, equitable threat score (ETS), compares how well the prediction does relative to random 225 
chance: 
 

ETS =
Σ	TP − β

Σ	TP + Σ	FP + Σ	FN − β 
(6) 

 
 
where β is the number of true positives obtained by random chance, 
 230 

 
 

β =
(Σ	TP + Σ	FP) ⋅ (Σ	TP + Σ	FN)
Σ	TP + Σ	TN + Σ	FP + Σ	FN  

(7) 

 
ETS is 1 for perfect prediction skill and 0 for no better or worse than chance.  

 
Predictor variable selection is an important task in implementing a RF, as the addition of non-235 

informative variables can decrease performance. Unlike linear regression which can naturally ignore 
unhelpful predictors, irrelevant data can by chance aid in minimizing impurity G at some stage in the 
optimization process making all subsequent splits suboptimal. The six meteorological variables given in 
Table 1 are standard in AOD/PM2.5 prediction [e.g. Kloog et. al., 2014; Li et. al., 2017], while the four 
spatio-temporal variables (location dummies, latitude, year, and day of year) and the retrieval gapfilling 240 
parameter 𝛼 proved to be informative in sensitivity tests. In addition to the predictor variables in Table 
1, we considered as additional variables the population density, the GOCI fine mode fraction (FMF), 
and the GOCI multiple prognostic expected error (MPEE), but we found that they worsened accuracy of 
the fit and so we did not retain them. Because population density worsened the fit we did not include 
other spatially varying but temporally fixed land-use variables such as road data. We also compared 245 
RFs trained on GOCI AOD and on GOCI-AHI fused AOD and found no significant difference in the 
fitting of PM2.5. We therefore use the GOCI AOD product because of its longer record. 
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3 Results and discussion  

3.1 Accuracy and precision of RF predictions  

Figure 3 shows scatterplots, color-coded by count, comparing surface observations of 24-h and annual 250 
mean PM2.5 to the predicted values in grid cells whose records are entirely withheld from training in the 
crossvalidation procedure. Predicted values for the annual mean are obtained by averaging the 24-h 
predictions. Table 2 gives comprehensive statistics for East Asia and for each country. The 24-h 
predictions for East Asia have a negligible mean bias of 0.23 μg m-3 (annual, 0.22 μg m-3), though the 
RF underpredicts PM2.5 at the high tail of the distribution; we will return to that issue later in the context 255 
of NAAQS exceedances. Root mean square error (RMSE) between observed and predicted 24-h PM2.5 
is 8.8 μg m-3 s (annual, 3.3 μg m-3) corresponding to a relative RMSE (RRMSE) of 37% (annual, 14%), 
as defined in section 2.3. The prediction captures 89% of the observed 24-h variance (R2 = 0.89) and 
96% of annual (R2 = 0.96). These results compare favorably to previously reported inferences of 24-h 
and annual PM2.5 at 1-10 km resolution from satellite data over China [Hu et. al., 2019; Xue et. al., 260 
2019]. R2 for annual mean PM2.5 in South Korea is relatively low (0.41), which can be explained by the 
weak dynamic range of observed annual PM2.5 in the country (Figure 1), as will be discussed later in 
this section. Our gap-filling strategy does not introduce bias for days without GOCI observations (and 
with AOD inferred instead from equation (1)), as the evaluation statistics for those days are similar to 
the whole population.  265 
 

 

 

Figure 3: Ability of the random forest algorithm to predict 24-h and annual mean PM2.5 in East Asia. Scatterplots depict the relationship 
between predicted and observed PM2.5 at network sites withheld from training in the crossvalidation. The plots are two-dimensional 270 
histograms where pixel color corresponds to the count of observation/prediction correspondences within the corresponding bin on a logged 
scale. The identity line is plotted in black. For annual mean PM2.5, grid cells with fewer than 80% of PM2.5 observation days in a given year 
are removed to avoid biasing the average.  



10 
 

 
Table 2. Error statistics for fitting of PM2.5 data by the RF algorithma 

 RMSE (µg m-3)   RRMSE R2 MB (µg m-3)    
24-h PM2.5     
     Overall 8.8 37% 0.89 0.23 
     Eastern China 15 32% 0.85 0.49 
     South Korea 6.4 26% 0.82 0.16 
     Japan 3.6 27% 0.79 0.12 
Annual PM2.5     
     Overall 3.3 14% 0.96 0.22 
     Eastern China 5.6 12% 0.86 0.53 
     South Korea 2.9 12% 0.41 0.24 
     Japan 1.6 12% 0.70 0.094 

aComparison statistics between predicted and observed PM2.5 are for the grid cells in each of eastern China, South Korea, and Japan 275 
completely withheld from the RF training process in the crossvalidation procedure. Statistics shown are for root-mean-square error (RMSE), 
relative RMSE (RRMSE), coefficient of variation (R2), and mean bias (MB). 

One potential application of PM2.5 monitoring from space would be to diagnose exceedances of 
national ambient air quality standards (NAAQS) at locations without network sites.  Table 3 shows the 
NAAQS for 24-h and annual PM2.5 for the three countries and the ability of the RF algorithm to 280 
diagnose NAAQS exceedances in grid cells excluded from the training process in the crossvalidation 
procedure. 24-h exceedances correspond to the high tails of the distributions but annual exceedances are 
much more widespread. The POD column shows percent of true positives successfully detected, while 
the FAR shows the rate of false positives (defined in section 2.3). POD for 24-h exceedances ranges 
from 47%-78% by country (FAR: 16%-21%). PODs are higher for annual exceedances but that reflects 285 
the higher observed frequency of these exceedances. The ETS values ranging from 0.43-0.63 indicate 
that the model captures exceedances with much better skill than random guessing. 
 
Table 3. Ability of the RF algorithm to diagnose exceedances of air quality standardsa 
 NAAQS Exceedance frequencyc PODd FARe ETSf 
 (µg m-3)b Observed RF    
24-h PM2.5       
     Eastern China 75  16% 15% 78% 16% 0.63 
     South Korea (old NAAQS) 50 5.9% 4.2% 57% 21% 0.47 
     South Korea (new NAAQS) 35 19% 17% 73% 20% 0.55 
     Japan 35 1.6% 0.91% 47% 17% 0.43 
Annual PM2.5       
     Eastern China 35 77% 83% 97% 9.2% 0.54 
     South Korea (old NAAQS) 25 40% 44% 67% 39% 0.23 
     South Korea (new NAAQS) 15 100% 100% 100% 0% NA 
     Japan 15 24% 20% 68% 20% 0.49 

a Calculated using sites withheld from training in the crossvalidation procedure. 
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b National Ambient Air Quality Standards, specific to each country. We show results for the class 2 NAAQS in eastern China and for both 290 
pre-2018 (‘old’) and post-2018 (‘new’) NAAQS for South Korea because all observed grid cells exceed the new annual NAAQS of 15 μg 
m-3. 
c Percentage of site-days (24-h standard) or site years (annual standard) exceeding the NAAQS.  
d Percent of detection (POD) defined as the percentage of exceedances successfully detected.  
e False alarm ratio (FAR) defined as the percentage of predicted exceedances that did not occur.  295 
f Equitable threat score (ETS) defined as the ability of the RF to predict exceedances beyond random chance.  
 

The main difficulty for the RF algorithm to predict NAAQS exceedances is that many of those 
exceedances fall within the precision of individual predictions. This is illustrated in Figure 4 with the 
cumulative probability density function (pdf) of the 24-h and annual mean PM2.5 concentrations in 300 
eastern China, South Korea, and Japan, representing the same withheld data from the crossvalidation as 
in Tables 2 and 3. The 24-h RRMSE of 26-32% depending on country (Table 2) is shown as the grey 
envelope and is relatively flat across the distribution. Prediction of NAAQS exceedances within that 
uncertainty envelope is limited by the precision of the algorithm. All of the 24-h exceedances in Japan 
are within that envelope, as are most of the exceedances in eastern China and Korea. China has the 305 
largest fraction of exceedances beyond the RRMSE of the RF algorithm and therefore the best 
prediction success. An additional though smaller cause of bias is that the RF algorithm underestimates 
the high tail of the pdf, as is apparent in Figure 4, which explains in particular why we achieve a better 
FAR than POD for 24-h PM2.5 in South Korea and Japan. Our worst NAAQS prediction performance is 
for annual PM2.5 in South Korea for the old 25 µg m-3 standard, because most of the distribution is 310 
within the RRMSE envelope. Additionally, the already small dynamic range of observed annual PM2.5 
(black dots) is underestimated by the RF (blue dots). These culminate in an RF estimate with good 
RMSE but low R2. 
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Figure 4: Cumulative probability density functions (pdfs) of 24-h and annual mean PM2.5 concentrations in Eastern China, South Korea, and 315 
Japan. Observations (black) are compared to RF predictions (colored) taken from the crossvalidation. The grey envelope represents the 
relative root mean square error (RRMSE) of the RF algorithm as given in Table 2, measuring the predictive capability of the algorithm for 
individual events. The NAAQS for each country is shown as the horizontal line, with both the pre-2018 and post-2018 NAAQS shown for 
South Korea. Left panel scales are log-log while right-panel scales are linear. y-axis scales vary for the different countries. 

We experimented with several modifications to the RF algorithm to improve prediction of 320 
NAAQS exceedances but with no success. These tests included training separate RFs for each of the 
three countries; training annual PM2.5 predictions on annual (rather than 24-h) PM2.5 data; directly 
predicting NAAQS exceedances by setting the learned label to be true if a day (year) is above the 24-h 
(annual) NAAQS for a given country; and applying different weights to the data so that the high tail is 
oversampled in the training process. None of these tests yielded significant improvements. Smoothing 325 
of the tails in RFs is a well-recognized problem [Zhang and Lu, 2012]. Following Zhang and Lu [2012] 
we attempted to train RFs to predict and correct the residuals but found this to be ineffective. Part of 
this tail smoothing could also result from the underlying GOCI AOD land product, which has a negative 
bias (-0.02) for high AODs and a positive bias (+0.02) for low AODs [Choi et. al., 2018]. 

3.2 PM2.5 temporal trends and spatial distributions 330 

Figure 5 shows long-term trends of annual PM2.5 for each country, as measured by the PM2.5 network 
and as inferred from our RF algorithm for both areal and population-weighted means. We do not 
include RF PM2.5 for years before the networks became available (and hence when the RF could be 
trained) because of concern over extrapolation bias. The PM2.5 networks show decreasing trends in all 
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three countries and these trends are consistent with the RF PM2.5 for both areal and population-weighted 335 
means, demonstrating that the trends reported by the PM2.5 networks are representative of the countries. 
However, the PM2.5 networks in eastern China and South Korea underestimate the population-weighted 
means. Trends in South Korea and eastern China become flat between 2018 and 2019 (with a slight 
population-weighted increase in South Korea). This could possibly reflect interannual meteorological 
variability [Zhai et al., 2019; Koo et. al., 2020], but also an increase in oxidants producing secondary 340 
aerosol [Huang et. al., 2021].  
 

 
 
Figure 5: Trends in annual mean PM2.5 concentrations for eastern China, South Korea, and Japan. Trends determined from the national 345 
surface PM2.5 networks averaged over 6x6 km2 grid cells, requiring at least 80% of data for all years plotted, are compared to trends inferred 
by the random forest (RF) algorithm with continuous temporal and spatial coverage on the 6x6 km2 grid and weighted either by area or by 
population. Here we use an RF trained on all the data. Gridded population data are from CIESIN [2018]. The national PM2.5 networks include 
413 continuously observed grid cells in eastern China, 74 in South Korea, and 307 in Japan. Trends are initialized at the onset of the surface 
network for complete years of data; due to the unavailability of the early months of the year, 2011 is discarded for Japan and 2014 for eastern 350 
China. 
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Figure 6 shows the changes in annual mean PM2.5 concentrations over South Korea between 
2015 and 2019, as observed from the national network and as predicted by the RF. We focus on South 
Korea for discussion because it shows the advantages of satellite-based PM2.5 in a region that already 
has good coverage. Continuous mapping from the RF algorithm enabled by the GOCI AODs adds 355 
enormous coverage to the sparse surface observations, including detection of PM2.5 hotspots missing 
from the network such as the Iksan region on the west coast in 2015 that was subsequently added to the 
network by 2019.  

 

 360 
Figure 6: Annual mean PM2.5 concentrations in South Korea in 2015 and 2019.  RF predictions (top) inferred from an RF trained on all 
available data are compared to AirKorea network observations (bottom). Network observations are shown only if at least 80% of the year 
was observed. 

Figure 7 depicts the relative 2015-2019 trends of PM2.5 concentrations in South Korea derived 
from a linear regression applied to the annual RF PM2.5 in each 6x6 km2 grid cell. Such a spatially 365 
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resolved trend analysis is uniquely enabled by the GOCI coverage. We find decreases across the 
country except in the Seoul Metropolitan area which mostly shows no significant trend except for a few 
pixels in Incheon. These results are consistent with the spatial patterns calculated from AirKorea data 
by Yeo and Kim [2019], who found 2015-2018 decreases in Incheon but not Seoul or the surrounding 
Gyeonggi province. Despite the insignificant changes in Seoul, substantial PM2.5 decreases are found 370 
over other large urban areas including Busan, Ulsan, Daegu, and Gwangju. The three rapidly decreasing 
spots on the southern coast are Gwangyang, Sacheon, and Changwon, which house industrial 
complexes related to the South Korean shipbuilding industry that has recently declined [Jung-a 2016]. 
 

 375 
Figure 7: 2015-2019 trends per year in PM2.5 concentrations across South Korea. The trends are obtained by ordinary linear regression of 
the annual mean RF PM2.5 in each 6x6 km2 grid cell with significant regression slopes (𝒑 < 𝟎. 𝟎𝟓), where the RF is trained on all the 
available data. Grid cells with insignificant trends are plotted in gray. 

AOD and PM2.5 in East Asia tend to have opposite seasonalities driven by boundary layer depth 
and RH [Zhai et al., 2021]. Figure 8 compares predicted and observed monthly mean PM2.5 in the 380 
Beijing, Seoul, and Tokyo metropolitan areas, with predictions coming from withheld data in the 10-
fold crossvalidation. Correspondence between modelled and observed PM2.5 may be tighter than the 
nationwide annual means plotted in Figure 5 because these urban areas are well-observed. We see that 
the RF algorithm fully captures the observed seasonality in PM2.5, although some observed monthly 
spikes are underestimated. The Figure illustrates the lack of trend in the Seoul Metropolitan Area over 385 
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2015-2019 but also shows that winter and summer PM2.5 in the region have opposite and roughly equal 
trends, with winter growing more polluted while summers become cleaner. 

 

Figure 8: Monthly PM2.5 concentrations in the Beijing Seoul and Tokyo metropolitan areas. Predictions from the RF algorithm for totally 
withheld sites in the crossvalidation are compared to network observations. Beijing is defined by the namesake province boundary, Seoul 390 
by the Seoul and Incheon boundaries, and Tokyo as Ibaraki, Saitama, Chiba, Tokyo, Kanagawa, and Yamanashi prefectures.  

3.3 Urban-scale pollution events 

We examine here the ability of the RF algorithm to capture the spatial and temporal variability 
of PM2.5 pollution events on urban scales. Figure 9 shows a predicted map of PM2.5 — produced by a 
RF trained on all the data, with observed PM2.5 overlaid — across the Seoul metropolitan area on May 395 
24-29, 2016 corresponding to a severe pollution event sampled during the KORUS-AQ field campaign 
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[Crawford et. al., 2021]. The dense PM2.5 network for Seoul shows large variability at the sub 6x6 km2 
scale that the AOD data and thus this RF PM2.5 product cannot resolve. However, the RF algorithm 
capture most of the variability in observed 24-h PM2.5 concentrations aggregated on the 6x6 km2 grid 
(R2 = 0.74). The RF also captures successfully the day-to-day variability during the event.  400 

Figure 9: 24-h PM2.5 concentrations during a pollution event in Seoul-Incheon (May 24-29, 2016). Predictions from the RF algorithm 
(background, on 6x6 km2 grid scale) trained on all available data are compared to observations from the AirKorea surface network 
(circles).   

Figure 10 shows an additional test of the RF algorithm with one of the most severe pollution 405 
events in the record, the December 16-21, 2016 Beijing winter haze episode. 24-h PM2.5 concentrations 
exceeded 400 μg m-3 at some of the network sites. While there is a tight correspondence between the RF  
and observed 24-h PM2.5 for Beijing grid cells (R2 range: 0.74-0.99), the observations are on average 20 
μg m-3 higher than the RF PM2.5. The difference is most pronounced at the December 21 concentration 
peak which has mean observed value 396 μg m-3 to the predicted 348 μg m-3. This reflects the RF 410 
smoothing of the high tail of the distribution as previously illustrated in Figure 4.   
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Figure 10: Same as Figure 9 but for a pollution event in Beijing on December 16-21, 2016.  

3.4 Regional air quality model evaluation 

Regional air quality model predictions of PM2.5 are typically evaluated with observations from 415 
surface network sites, but the spatially continuous RF PM2.5 fields offer more extensive coverage for 
model evaluation. We demonstrate this capability here with Community Multiscale Air Quality 
Modeling System (CMAQ version 4.7.1) simulations for the Korean peninsula including both South and 
North Korea at 9-km resolution [Bae et al., 2018; Bae et al., 2021]. There are no surface PM2.5 data in 
North Korea to train the RF so we use the South Korea categorical variable to generate the RF PM2.5 420 
fields there. 

The simulation for South Korea was conducted for 2015-2019 using emissions from the Clean 
Air Policy Support System (CAPSS) 2016 [Choi et al., 2020] for South Korea and KORUSv5 [Woo et 
al., n.d] for outside South Korea. The simulation for North Korea was conducted for 2016 using 
emissions from the Comprehensive Regional Emissions Inventory for Atmospheric Transport 425 
Experiment (CREATE) 2015 [Woo et al., 2020] and CAPSS 2013. To prepare the boundary conditions, 
a coarse domain at 27-km horizontal grid resolution covering Northeast Asia was used.  

Figure 11 illustrates the increased capability for model evaluation in South Korea enabled by 
the RF PM2.5 fields. The bottom row shows the mean 2015-2019 PM2.5 concentrations in CMAQ 
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compared to the AirKorea network and to the RF, and the top row shows comparison scatterplots. The 430 
top left panel compares the CMAQ simulation to 2015-2019 mean PM2.5 observations from the 398 
AirKorea network sites. The top middle panel compares the RF PM2.5 to the same AirKorea network 
data, showing excellent agreement. The RF-generated fields provide 1353 points for South Korea on the 
9x9 km2 CMAQ grid, and the top right panel shows the resulting increase in capability for evaluation of 
the CMAQ simulation. It shows in particular that CMAQ underestimates PM2.5 in coastal environments, 435 
possibly because of unaccounted ship emissions.  
 

 
Figure 11: Mean PM2.5 concentrations in South Korea in 2015-2019 as simulated by CMAQ, measured at the AirKorea sites, and represented 
by the RF. The top panels show scatterplots comparing the CMAQ and RF fields to the Air Korea measurements (398 sites), and CMAQ to 440 
the RF fields on the 9x9 km2 CMAQ grid (1353 grid cells to compare). The bottom panels show maps of the mean 2015-2019 concentrations.  

Figure 12 evaluates the CMAQ simulation with the RF PM2.5 fields over North Korea. Unlike in 
South Korea, there are no observation sites in North Korea and RF PM2.5 offers the only opportunity for 
local evaluation. CMAQ and RF PM2.5 show dramatically different patterns. The highest PM2.5 in 
CMAQ is in the Pyongyang capital region, while the RF shows highest values in the north-central 445 
region. The lack of reliable emission inventories for North Korea makes it difficult to arbitrate this 
difference. The RF is not trained for North Korea, which might lead to positive biases because the 
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AOD/PM2.5 ratio modeled in the Zhai et al. [2021] GEOS-Chem simulation is higher over North Korea 
outside the mountainous east (range: 0.010-0.013 m3 µg-1) than over South Korea (0.008-0.010 m3 µg-1). 
However, the difference could also be explained by missing emissions in the inventory. Further 450 
evaluation could be done with border sites in South Korea and northeastern China. China MEE sites 
along the border are consistent with high PM2.5 in north-central North Korea. 

 

 
Figure 12:  Mean PM2.5 concentrations in North Korea in 2016 as simulated by CMAQ and as represented by the RF assuming South Korea 455 
as categorical variable. The middle panel shows observed PM2.5 concentrations from the AirKorea and China MEE networks. 

4 Conclusions 

We used 2011-2019 geostationary aerosol optical depth (AOD) observations from the GOCI satellite 
instrument, in combination with a random forest (RF) machine learning algorithm trained on air quality 
network data, to produce a continuous 24-h PM2.5 data set for eastern China, South Korea, and Japan at 460 
6x6 km2 resolution. The resulting gap-free product complements the air quality networks that cover 
only 1% of 6x6 km2 grid cells in eastern China, 7% in South Korea, and 8% in Japan. It provides a 
general dataset for PM2.5 mapping to serve regional pollution analysis, air quality monitoring, and 
public health applications.  

We trained the RF algorithm on gap-filled AODs from the GOCI instrument and a suite of 465 
twelve meteorological, geographical, and temporal predictor variables. Gap filling of AODs was done 
by a weighted combination of nearest-neighbor data and chemical transport model fields, with the 
weight serving as an additional predictor variable. Testing of the RF algorithm by prediction of 
withheld network sites shows single-value precisions in each country of 26-32% for 24-h PM2.5 and 
12% for annual mean PM2.5, with negligible mean bias. Accuracy statistics for PM2.5 inferred on grid 470 
cells with no AOD retrieval (i.e. estimated using equation (1)) show similar accuracy statistics as the 
entire population, suggesting that the gap-filling procedure does not bias the results. The algorithm has 
only moderate success at predicting NAAQS exceedance events because most of these events are within 
the single-value precision, and also because of some smoothing of the extreme high tail of the PM2.5 
frequency distribution. 475 
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We compared the continuous 24-h RF PM2.5 fields to spatial and temporal patterns observed at 
the national network sites. National trends of PM2.5 inferred from the RF and weighted by area or 
population are consistent with those observed at network sites (2015-2019 in eastern China and South 
Korea, 2011-2019 in Japan), confirming that the trends observed at these sites are representative. 
However, the network sites in eastern China and South Korea underestimate population exposure. The 480 
RF PM2.5 fields over South Korea show PM2.5 hotspots missing in the early AirKorea network (2015) 
that are confirmed by subsequent addition of sites to the network (2019).  The spatial distribution of RF 
PM2.5 trends in South Korea shows decreases everywhere except in the Seoul metropolitan area where 
trends are flat. We show with time series in the capital cities (Beijing, Seoul, Tokyo) that the RF 
successfully captures the seasonality of PM2.5 even though AOD and PM2.5 have different and often 485 
opposite seasonalities. 

We examined the ability of the RF algorithm to map air quality on urban scales by analysis of 
two multi-day pollution episodes in Seoul and Beijing. The algorithm captures the day-to-day temporal 
variability observed by the surface networks as well the spatial variability on the 6x6 km2 scale. The 
highest PM2.5 concentrations are underpredicted, which reflects the smoothing of the high tail of the 490 
distribution. 

The continuous spatial coverage of PM2.5 provided by the RF fields enables improved evaluation 
of the air quality models used in support of emission control policies. Comparison to a CMAQ 
simulation for South Korea in 2015-2019 reveals a large model underestimate in coastal environments 
undersampled by the AirKorea network. Comparison to a CMAQ simulation for North Korea in 2016, 495 
where the RF provides the only PM2.5 data for model evaluation, shows drastically different patterns 
with the RF featuring high PM2.5 throughout North Korea. The RF results in North Korea could be 
affected by errors due to lack of training data but they appear consistent with the PM2.5 network 
observations at Chinese border sites. 

 500 
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