Air quality trends and regimes in South Korea inferred from 1

2015–2023 surface and satellite observations 2

Yujin J. Oak¹, Daniel J. Jacob^{1,2}, Drew C. Pendergrass¹, Ruijun Dang¹, Nadia K. Colombi², 3

¹School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

³ Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA

14

15 Abstract.

16 We analyze 2015–2023 trends in air quality in South Korea using surface (AirKorea network)

17 and satellite measurements, including the new GEMS geostationary instrument. Primary air

18 pollutants (CO, SO₂, NO₂) have decreased steadily at rates consistent with the national CAPSS

19 emissions inventory. Volatile organic compounds (VOCs) show no significant trend. GEMS

20 glyoxal (CHOCHO) identifies large industrial sources of VOCs while formaldehyde (HCHO)

21 points to additional biogenic sources. Surface ozone (O₃) peaks in May–June and the maximum

8-hour daily average (MDA8) exceeds the 60 ppby standard everywhere. The AirKorea average 22

- 23 May–June 90th percentile MDA8 O₃ increased at 0.8 ppbv a⁻¹, which has been attributed to
- 24 VOC-sensitive conditions. Satellite HCHO/NO₂ ratios indicate that the O₃ production regime

25 over Korea is shifting from VOC- to NOx-sensitive conditions as NOx emissions decrease. The

26 O₃ increase at AirKorea sites is because most of these sites are in the Seoul Metropolitan Area

where vestiges of VOC-sensitive conditions persist; we find no such O₃ increases over the rest of 27

- 28 Korea where conditions are NO_x-sensitive or in the transition regime. Fine particulate matter
- (PM_{2.5}) has been decreasing at 5% a⁻¹ in both AirKorea and satellite observations but the nitrate 29
- (NO₃⁻) component has not been decreasing. Satellite NH₃/NO₂ ratios show that PM_{2.5} NO₃⁻ 30
- formation was NH₃-sensitive before 2019 but is now becoming NO_x-sensitive as NO_x emissions 31
- 32 decrease. Our results indicate that further NO_x emission decreases in Korea will reap benefits for

33 both O_3 and $PM_{2.5}$ NO_3^- as their production is now dominantly NO_x -sensitive.

⁴ Heesung Chong³, Seoyoung Lee^{4,5}, Su Keun Kuk⁶, Jhoon Kim⁷

² Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA

⁵ 6 7 8 9 ⁴ Goddard Earth Sciences Technology and Research (GESTAR) II, University of Maryland, Baltimore County, Baltimore, MD, USA

¹⁰ ⁵ Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA

¹¹ ⁶ Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, South Korea

¹² ⁷ Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

¹³ Correspondence to: Yujin J. Oak (vjoak@g.harvard.edu)

35 **1. Introduction**

36 South Korea experienced rapid development over the past 30 years with an annual average 37 GDP growth rate of 5% (S. Song and G. Lee, 2020). This has resulted in high emissions of 38 carbon monoxide (CO), sulfur dioxide (SO₂), nitrogen oxides (NO_x \equiv NO + NO₂), nonmethane 39 volatile organic compounds (NMVOCs), and primary fine particulate matter ($PM_{2.5}$, smaller than 40 2.5 µm diameter) (Y. Kim and G. Lee, 2018). Subsequent atmospheric chemistry produces 41 surface ozone (O_3) and additional PM_{2.5}, which are the main pollutants of concern for air quality. 42 30,000 premature deaths per year are presently attributed to air pollution in South Korea 43 (hereafter referred to as Korea) (Oak et al., 2023; J. Choi et al., 2024). National air quality 44 standards were tightened in 2018 for O₃ (60 ppbv maximum 8-hour daily average or MDA8) and 45 for PM_{2.5} (15 μ g m⁻³ annual, 35 μ g m⁻³ 24-hour). None of the sites in the AirKorea governmental 46 surface network meet the O₃ standard as of 2022, and only 4% meet the 24-hour PM_{2.5} standard, 47 despite governmental efforts to decrease emissions.

48 The need to decrease emissions responsible for air pollution has been recognized since the 49 1980s, prompting early control policies to regulate solid fuel use and outdoor combustion, and 50 promote clean fuels. This effectively reduced SO₂, CO, and directly emitted (primary) PM (Y. 51 Kim and G. Lee, 2018). More recent efforts by the Korean Ministry of Environment (MOE) have 52 targeted NO_x emissions. However, O₃ pollution has been getting worse at a rate of 1.0-1.5 ppbv 53 a^{-1} over 2000–2021 (S. W. Kim et al., 2023). PM_{2.5} has decreased though unevenly (J. Jeong et 54 al., 2022; H. M. Lee et al., 2024; Pendergrass et al., 2022; 2024), with an increasing contribution 55 from secondary components produced chemically in the atmosphere including secondary organic 56 aerosol (SOA) and particulate nitrate (NO₃⁻) (H. M. Lee et al., 2024).

57 Synoptic meteorology and transport from China also contribute to seasonal and long-term 58 variations of pollutants over Korea. Photochemical O_3 production is largest during the summer 59 months, but O₃ peaks in May–June due to the summer monsoon in July–August (H. M. Lee and 60 R. Park, 2022). Wildfires, stratospheric intrusions, and transport from China also contribute to 61 high O₃ levels during May–June (H. M. Lee and R. Park, 2022). PM_{2.5} is highest during the 62 colder months (October–March), due to increased energy consumption and stagnant conditions 63 over the Korean peninsula (J. Jeong et al., 2024), but here again transport from China also makes 64 an important contribution (D. Park et al., 2021). PM2.5 pollution in China has decreased 65 considerably over the past decade in response to emission controls (Zhai et al., 2019) and this has

decreased its influence on Korea (Bae et al., 2021). On the other hand, O₃ pollution in China has
gotten worse (K. Li et al., 2021).

68 Formation of O₃ and secondary PM_{2.5} depends on complex chemistry involving NO_x and 69 NMVOCs that would respond nonlinearly to emission controls. $PM_{2.5} NO_3^-$ formation further 70 depends on ammonia (NH₃) emissions, which are mainly from agriculture and have not been 71 decreasing. The dependences of O₃ and PM_{2.5} concentrations on precursor emissions define 72 chemical regimes that are important to understand for emission control strategies. They can be 73 studied with 3-D chemical transport models (CTMs) that couple emissions, chemistry, and 74 transport (R. Park et al., 2021). The formaldehyde (HCHO) to NO₂ ratio measured from satellite 75 can diagnose O₃ sensitivity to VOCs versus NO_x emissions (Duncan et al., 2010; Martin et al., 76 2004), and the NH₃ to NO₂ ratio can diagnose NO₃⁻ sensitivity to NH₃ versus NO_x emissions 77 (Dang et al., 2023; 2024). 78 Satellites offer a growing resource for monitoring air pollutants, trends, and regimes over 79 Korea. Low-Earth orbit (LEO) instruments observe at specific times of day. Important 80 instruments include MOPITT (Edwards et al., 2004) and TROPOMI (Veefkind et al., 2012) for 81 CO, OMI (Levelt et al., 2006) and TROPOMI for SO₂, NO₂, HCHO, and glyoxal (CHOCHO), 82 and IASI (Van Damme et al., 2014) for NH₃. Geostationary instruments over East Asia including 83 GOCI and GOCI-II provide hourly observations of aerosol optical depth (AOD) (M. Choi et al., 84 2018; S. Lee et al., 2023). The Geostationary Environment Monitoring Spectrometer (GEMS), 85 launched in February 2020, provides the first hourly observations of gases by solar backscatter 86 including SO₂, NO₂, HCHO, and CHOCHO (J. Kim et al., 2020). 87 Here we analyze recent 2015–2023 trends in air quality in Korea by exploiting both satellite 88 and surface observations. We interpret the trends in terms of the major drivers and evaluate 89 consistency with annual bottom-up emission estimates from the Clean Air Policy Support 90 System (CAPSS) of the MOE (S. Choi et al., 2022). We start from 2015 when PM_{2.5} 91 observations from the AirKorea network became available, with subsequent milestones including 92 the May–June 2016 Korea-United States Air Quality (KORUS-AQ) field campaign (Crawford et 93 al., 2021) and satellite observations from TROPOMI (starting in May 2018) and GEMS (starting

94 in November 2020). We use HCHO/NO₂ and NH₃/NO₂ indicators from the satellite data to

95 diagnose O₃ and PM_{2.5} chemical regimes and their trends.

97 2. Air quality observing system for South Korea

98	We make use of air quality observations in Korea from surface sites, aircraft, and satellites.
99	The National Institute of Environmental Research (NIER) operates the AirKorea surface network
100	of 642 monitoring sites as of 2023 (https://www.airkorea.or.kr/eng, last access: 12 August 2024),
101	providing hourly data on CO, SO ₂ , NO ₂ , O ₃ , PM_{10} (smaller than 10 μ m diameter), and $PM_{2.5}$
102	concentrations. Monthly VOCs data (56 species) are available at a few urban sites. The KORUS-
103	AQ field campaign in May–June 2016 included a detailed chemical payload onboard the DC-8
104	aircraft with extensive vertical profiling over the Seoul Metropolitan Area (SMA) at different
105	times of day (Crawford et al., 2021). This was used by Yang et al. (2023) to infer diurnal profiles
106	of NO ₂ vertical column densities (VCDs) over the SMA and we will do the same here for HCHO
107	and CHOCHO.
108	Satellite observations for air quality over Korea used in this work are compiled in Table 1
109	and are applied to analyze annual, diurnal, and spatial variations of pollutants. We filter out
110	cloudy scenes using a cloud fraction threshold of 0.3 and apply additional quality filtering as
111	recommended by the retrieval teams. GOCI and GOCI-II AOD retrievals are for 550 nm
112	wavelength. CO is retrieved in both the shortwave and thermal infrared (SWIR and TIR). NH ₃ is
113	retrieved in the TIR. All other gases are retrieved in the ultraviolet-visible (UV-VIS).
114	Tropospheric O_3 can also be retrieved in the UV but the measurements are difficult because of
115	air scattering and the stratospheric column overhead, and different products are inconsistent over
116	Korea (Gaudel et al., 2018). We do not use them here.

117 Table 1. Satellite observations used in this work.

Instrument	Launch	Species ^a	Spatial resolution ^b	Version	Reference
Low Earth orbit					
MOPITT	1999	СО	$22 \times 22 \text{ km}^2$	V9	Deeter et al. (2022)
OMI	2004	SO ₂ , NO ₂ ,	$13 \times 24 \text{ km}^2$	V3 ^c	González Abad et
		НСНО,			al. (2015); Krotkov
		СНОСНО			et al. (2017); C. Li
					et al. (2020); Kwon

TROPOMI	2017	CO , NO2,	$5.5 \times 3.5 \text{ km}^2$	V2.4.0	De Smedt et al.	
		НСНО			(2018); Landgraf et	
					al. (2016); van	
					Geffen et al. (2022)	
IASI	2006	NH ₃	$12 \times 12 \text{ km}^2$	V4	Clarisse et al.	
					(2023)	
Geostation	Geostationary orbit					
GEMS	2020	SO ₂ , NO ₂ ^d ,	$3.5\times7.7\ km^2$	V2.0.0	Ha et al. (2024); G.	
		НСНО,			T. Lee et al. (2024);	
		СНОСНО			NIER (2020) ; Oak	
					et al. (2024)	
GOCI	2011	AOD	$2 \times 2 \text{ km}^2$	YAER ^e V2	M. Choi et al.	
					(2018)	
GOCI-II	2020	$\mathrm{AOD}^{\mathrm{f}}$	$2.5\times2.5\ km^2$	YAER	S. Lee et al. (2023)	

^a Total atmospheric columns except for NO₂ (tropospheric column).

^bNative pixel resolution of retrieval.

120 ° Provided at $1^{\circ} \times 1^{\circ}$ by Kwon et al. (2024).

^dBias-corrected by Oak et al. (2024).

122 ^e Yonsei Aerosol Retrieval.

¹²³ ^fObservations within the range of GOCI AOD (-0.05 to 3.6) are used to account for the systematic low bias in

124 GOCI-II compared to GOCI (S. Lee et al., 2023; Pendergrass et al., 2024).

125

126 **3.** Air quality distributions and trends in South Korea

127 Here we analyze spatial distributions and temporal trends of individual air pollutants using

128 surface and satellite observations, and compare the trends to the annual bottom-up estimates of

129 anthropogenic emissions from CAPSS, reported with a two-year lag

130 (https://www.air.go.kr/eng/main.do, last access: 12 August 2024). CAPSS includes

131 city/county/district (Korean; si/gun/gu) level emissions for source categories including fuel

132 combustion, manufacturing, solvent use, mobile sources, agriculture, and anthropogenic biomass

- 133 burning (biofuel, agriculture).
- 134 Figure 1 shows major anthropogenic source regions in Korea. There are seven major cities
- 135 with populations larger than one million. The SMA (37–37.8° N, 126.4–127.5° E) is the largest
- 136 urban area which includes Seoul, Incheon, and surrounding suburbs, with concentrated

electronics and chemical industry. The southeast region including Busan and Ulsan is the second
largest urban area and has petrochemical facilities, oil refineries, and steel/ship/automobile
manufacturing industries.

140

141 **3.1. Carbon monoxide (CO)**

142 CO levels in Korea have consistently remained below the national air quality standards (9) 143 ppmv 8-hour, 25 ppmv 1-hour) since the late 1990s (NIER, 2023). CO is nevertheless a useful 144 tracer of pollution and plays an important role driving ozone formation in Korea (Gaubert et al., 145 2020; H. Kim et al., 2022). Anthropogenic CO emissions in CAPSS are 45% from transportation 146 (passenger vehicles, heavy-duty vehicles, ships) and 32% from biomass burning (agricultural 147 waste incineration, biofuels). Figures 2a-c compare 2021 CAPSS CO emissions with 2023 148 average surface CO and TROPOMI VCDs. Concentrations are highest in urban and industrial 149 areas. Low VCDs along the east coast are due to topography. The effect of topography on VCDs 150 is more apparent for CO than for other species because of the longer lifetime of CO and hence higher background (lower variability). 151

152 Figure 2d shows annual trends, demonstrating consistency between CAPSS and atmospheric 153 observations. CAPSS emissions and AirKorea surface concentrations decrease at similar rates of -2.3 ± 1.7 and $-2.6 \pm 0.7\%$ a⁻¹. MOPITT decreases at a rate of $-0.9 \pm 0.5\%$ a⁻¹, slower than 154 155 surface concentrations because of the background contribution to the VCD. Chong et al. (2023) previously found a MOPITT CO decrease of $-0.6 \pm 0.1\%$ a⁻¹ during 2005–2018. It is estimated 156 157 that Chinese emissions contributed 21-25% to the downward trend between 2016 and 2022 (J. 158 Park et al., 2024; E. Kim et al., 2024). The 2019 spike found in both surface CO and VCDs is 159 due to stagnant conditions (J. Cho et al., 2022). This also affected other pollutants as will be 160 shown below.

161

162 **3.2. Sulfur dioxide (SO₂)**

163 SO₂ levels in Korea have consistently remained below the national air quality standards (20 164 ppbv annual, 50 ppbv 24-hour) over the past two decades due to large reductions of emissions 165 from power plants and the petrochemical industry (NIER, 2023). There is continuing motivation 166 for SO₂ emission controls to decrease PM_{2.5} sulfate (SO₄^{2–}). Figures 3a–c compare 2021 CAPSS 167 SO₂ emissions with 2023 average surface SO₂ and GEMS VCDs for all available observations. 168 GEMS displays enhancements in the SMA, mid-south coast (power plants, petrochemical/steel

- 169 industry) and northeastern regions (cement/concrete/pulp industry), consistent with previously
- 170 (2011–2016) identified OMI SO₂ hotspots (Chong et al., 2020).
- 171 Figure 3d shows good agreement between the CAPSS-reported emission trends and
- 172 atmospheric observations. CAPSS-reported emissions have decreased at a rate of $-9.9 \pm 3.3\%$
- 173 a^{-1} , while surface SO₂ concentrations and OMI VCDs have decreased at similar rates of $-6\% a^{-1}$
- 174 since 2015. Past trends (1999–2016) in Seoul showed that local emissions were the main drivers
- 175 of the long-term decrease in surface SO₂ (J. Seo et al., 2018). J. Park et al. (2024) found that
- 176 national mean surface SO₂ decreased by 41% from 2016 to 2022, owing to reductions in

177 domestic (25%) and Chinese (16%) emissions.

178

179 **3.3. Nitrogen dioxide (NO₂)**

180 NO₂ levels exceeded the national standards (30 ppbv annual, 60 ppbv 24-hour) at 28% of the 181 AirKorea sites in 2015 but fewer than 1% in 2022 (NIER, 2023). NO_x emissions in Korea are 182 dominated by the transportation sector, accounting for 64% of the CAPSS inventory. Control of 183 NO_x emissions is more recent than for CO and SO₂ and has been motivated not only by the NO₂ 184 standards but also to reduce $PM_{2.5} NO_3^-$. CAPSS NO_x emissions declined by 23% from 2015 to 185 2021 in response to policies including stronger regulation on heavy-duty diesel engines in 2016 186 (S. Song and G. Lee, 2020) and seasonal PM management plans implemented in 2019 (Bae et 187 al., 2022; J. Jeong et al., 2024).

188 Figures 4a–c compare 2021 CAPSS NO_x emissions with 2023 average surface NO₂ and 189 GEMS tropospheric VCDs. Here we use a GEMS product calibrated to TROPOMI to remove 190 artifacts (Oak et al., 2024). Surface concentrations and VCDs display similar spatial 191 distributions, with highest values in the SMA and other urban areas in the southeast. Figure 4d 192 shows that surface NO₂ and OMI tropospheric VCDs have decreased over the 2015–2023 period 193 by 32% and 36%, respectively. The trend in CAPSS-reported emissions ($-4.8 \pm 2.7\% a^{-1}$) is consistent with surface observations (-4.4 \pm 0.8% a⁻¹) and OMI VCDs (-4.6 \pm 0.8% a⁻¹) during 194 195 2015–2023. Meteorology-corrected trends in tropospheric VCDs observed by ground-based remote sensing instruments at urban sites decreased at similar rates $(-5.0 \text{ to } -5.4\% \text{ a}^{-1})$ during 196 197 2015–2020 (Y. Choi et al., 2023). Long-term (2005–2019) records show that significant 198 decreases in surface and OMI NO₂ began in 2015 (S. Seo et al., 2021). CAPSS shows in increase from 2015 to 2016, which is due to updates in emission factors (S. Choi et al., 2020). E. Kim et
al. (2024) found that only 2% of the observed 23% decrease in surface NO₂ during 2016–2021
over Korea was attributable to the Chinese contribution.

202 Geostationary satellite observations provide additional information on diurnal variation. 203 Figure 4e shows the 2021–2023 seasonal mean hourly variations of surface NO₂ and GEMS 204 VCDs over the SMA. Both surface and column NO₂ are higher by a factor of two during the cold 205 season, which can be explained by the longer NO_x lifetime (Shah et al., 2020). Surface NO_2 206 concentrations peak at 8–9 local time (LT) when daytime emissions accumulate in a shallow 207 mixed layer, then decrease by dilution over the rest of the morning as the mixed layer grows 208 from solar heating, returning to a secondary maximum in the evening when the mixed layer 209 collapses (Moutinho et al., 2020). In contrast, VCDs increase steadily in the morning as they are 210 not affected by mixed layer growth, reaching a steady state in the cold season as daytime 211 emissions become balanced by ventilation, and an afternoon decrease in the warm season due to 212 the additional effect of the daytime photochemical sink (Yang et al., 2024).

213

214 **3.4.** Nonmethane volatile organic compounds (NMVOCs)

215 NMVOCs emissions include important contributions from both anthropogenic and biogenic 216 sources. More than half of anthropogenic VOCs (AVOCs) emissions in CAPSS are from solvent 217 use while transportation is responsible for less than 10%, although the latter may be a severe 218 underestimate (S. Song et al., 2019; Y. Kim and G. Lee, 2018; Kwon et al., 2021). CAPSS also 219 does not account for residential emissions of volatile chemical products (VCPs), which could be 220 large in Korea as indicated by observations of elevated ethanol during KORUS-AQ (Beaudry et 221 al., 2024; Travis et al., 2024). Annual total AVOCs emissions are estimated to be a factor of two 222 larger than biogenic VOCs (BVOCs) on a national level (Jang et al., 2020). However BVOCs 223 play an important role in O₃ and SOA formation during summer (H. K. Kim et al., 2018; Oak et 224 al., 2022; H. M. Lee and R. Park, 2022), when its emissions are comparable to those of AVOCs 225 (J. Choi et al., 2022).

Figures 5a–b compare 2021 total AVOCs emissions from CAPSS and BVOCs emissions

227 calculated from MEGAN (Model of Emissions of Gases and Aerosols from Nature) (Guenther et

al., 2012). The two have contrasting distributions, with AVOCs mostly urban and industrial.

Shown in Figure 5c is the distribution of BTEX (\equiv benzene + toluene + ethylbenzene + xylenes)

230 concentrations observed at AirKorea sites, with high values over urban areas consistent with

231 CAPSS. Benzene is elevated on the west and southern coasts where it originates from the steel

industry, oil refineries, and petrochemical facilities (Fried et al., 2020; C. Cho et al., 2021; Y.

233 Seo et al., 2014). Toluene, xylenes, and ethylbenzene are abundant in the SMA (Y. Lee et al.,

234 2023; S.-J. Kim et al., 2021; S. Song et al., 2019) due to emissions from traffic and solvent use

(Simpson et al., 2020).

236 Figures 5d–e show spatial distributions of HCHO and CHOCHO VCDs from GEMS. These 237 are common intermediates in the oxidation of NMVOCs, but CHOCHO is preferentially 238 produced from aromatics (Kaiser et al., 2015; J. Li et al., 2016). Satellite observations are most 239 sensitive to precursor NMVOCs with short lifetimes and prompt HCHO or CHOCHO yields 240 including isoprene, alkenes, toluene, and xylenes (Palmer et al., 2003; Bates et al., 2021; Chan 241 Miller et al., 2017). The GEMS CHOCHO and HCHO VCDs are elevated in major industrial 242 regions, but CHOCHO shows hotspots for manufacturing industries while HCHO shows 243 hotspots for petrochemical facilities. HCHO observations are also more distributed, reflecting the 244 larger BVOCs contribution from isoprene.

245 Figure 5f shows the CHOCHO to HCHO ratio $R_{GF} = \text{VCD}_{\text{CHOCHO}}/\text{VCD}_{\text{HCHO}}$, illustrating the 246 contrast in their sources. R_{GF} is generally higher under anthropogenic dominance (Chen et al., 247 2023). Values range from 0.02 in rural regions to more than 0.05 in the SMA and Busan. In the 248 US, R_{GF} values are below 0.03 even under polluted conditions (Chan Miller et al., 2017) and are 249 down to 0.01 in rural regions with dominant biogenic sources (Kaiser et al., 2015). GEMS R_{GF} 250 values in Korea are higher everywhere, indicating a more important role for AVOCs emissions 251 than in the US where these emissions have been strongly regulated for decades (Parrish et al., 252 2009; Warneke et al., 2012). Unlike for other pollutants and in contrast to the US, regulation of 253 AVOCs emissions in Korea has been limited (S. Song and G. Lee, 2020; J. Kim et al., 2023). 254 Figure 5g shows no significant trends in AVOCs emissions, surface BTEX, and satellite 255 observations of CHOCHO and HCHO from OMI, TROPOMI and GEMS during 2015–2023. 256 Figure 6 compares diurnal variations of HCHO and CHOCHO VCDs in the SMA observed 257 from GEMS and DC-8 aircraft profiles during KORUS-AQ (May–June 2016). Here we use 258 airborne observations conducted below 8 km over the SMA. Mean loss frequencies of HCHO 259 and CHOCHO against oxidation by OH and photolysis average 0.42 h^{-1} and 0.61 h^{-1} , 260 respectively at 11–15 local time in these aircraft profiles. Computation of VCDs and loss

261 frequencies from the KORUS-AQ data is described in the Supplement. We find that the GEMS

columns are lower than the aircraft column and this has been previously reported as systematic

low biases in satellite observations of CHOCHO and HCHO (Chan Miller et al., 2017; Zhu et al.,

264 2016; Zhu et al., 2020). HCHO VCDs are more than twice higher during the warm season

265 (April–September) than the cold season (October–March), consistent with a biogenic

266 contribution to HCHO, while CHOCHO VCDs show no seasonal difference. GEMS and aircraft

267 diurnal variations show HCHO and CHOCHO increases in the morning from photochemical

production (G. T. Lee et al., 2024), flattening by midday. The aircraft data show a late afternoon
rise in HCHO but that is not seen in the satellite data.

270

271 **3.5. Ozone (O₃)**

None of the AirKorea monitoring sites met the MDA8 standard of 60 ppbv for O₃ as of 2022
(NIER, 2023). O₃ peaks in May–June in Korea (Figure 7a) with contributions from domestic
emissions, wildfires, stratospheric intrusions, and transport from China (H. M. Lee and R. Park,
2022). Several studies have reported on the O₃ increase in Korea over the past two decades,
using different O₃ concentration metrics and time periods (J. Seo et al., 2018; Yeo and Kim,
2022; S. W. Kim et al., 2023). Our own analysis of the May–June 90th percentile MDA8 O₃
calculated for individual AirKorea sites and then averaged across all sites shows a rapid increase

of 1.5 ± 0.4 ppbv a⁻¹ for 2005–2014, and a slower rate of 0.8 ± 0.9 ppbv a⁻¹ for 2015–2023

280 (Figure 7b).

281 Previous studies found that O₃ formation in major cities in Korea is in the VOC-sensitive

regime, where decreasing NO_x emissions causes O₃ to increase (S. Kim et al., 2018; S. W. Kim

283 et al., 2023; Oak et al., 2019; Souri et al., 2020; H. J. Lee et al., 2021). However, as NO_x

284 emissions have decreased (Figure 4) whereas VOC emissions have not (Figure 5), O₃ formation

285 may shift to a NO_x-sensitive regime. The HCHO to NO₂ column ratio (R_{FN} =

286 VCD_{HCHO}/VCD_{NO2}), an indicator for O₃ sensitivity to NO_x versus VOCs (Duncan et al., 2010;

287 Martin et al., 2004), increased steadily from 2015 to 2023 as seen from OMI, TROPOMI, and

- 288 GEMS (Figure 7c). Based on the criteria from Duncan et al. (2010) the positive trend in R_{FN}
- implies that Korea is now mostly in the NO_x-sensitive regime ($R_{FN} > 2$). Figures 7d–e show
- 290 May–June 2023 MDA8 O_3 and its sensitivity regimes inferred from GEMS R_{FN} . Most of the
- 291 country is in a NO_x-sensitive regime while VOC-sensitive conditions are largely limited to the

292 central SMA. The broader SMA and urban southeastern Korea are in a transition regime where 293 O_3 is sensitive to both NO_x and VOCs emissions. These latter regions experience the most severe 294 O_3 pollution as both NO_x and VOCs contribute to O_3 formation.

- 295 Also shown in Figure 7b are May–June MDA8 O₃ trends for AirKorea sites in different 296 sensitivity regimes based on the 2023 GEMS R_{FN}. The O₃ increase during 2015–2023 is only 297 found in the VOC-sensitive areas $(1.6 \pm 0.8 \text{ ppbv a}^{-1})$. O₃ in NO_x-sensitive areas does not show 298 any noticeable increase. Reports of O3 increases in Korea based on data from the AirKorea sites 299 may be biased by the AirKorea sites being concentrated in the SMA, which has been mostly 300 VOC-sensitive. But this is now changing as NO_x emissions decrease, and O_3 pollution in Korea 301 is now poised to decrease everywhere in response to continued NO_x emission controls. In the 302 US, national average O_3 levels started to level off in the 1990s and declined significantly 303 afterwards, shifting from VOC- to NOx-sensitive regimes in response to NOx reduction (He et al., 2020). The 2023 US national average May–September 90th percentile MDA8 O₃ is now 304 305 slightly above 60 ppbv (US EPA, 2024). An additional challenge for Korea to meet its air quality 306 standard is the high background originating from East Asia, estimated to be 55 ppbv in 307 May–June (Colombi et al., 2023).
- 308

309 3.6. Particulate matter (PM)

310 PM levels have steadily decreased in Korea over the 2015–2023 period with more than 95% 311 of the AirKorea sites meeting the annual PM₁₀ standard (50 μ g m⁻³) since 2018. However, only 312 27% of sites met the PM_{2.5} annual standard (15 μ g m⁻³) in 2022, and only 4% met the 24-hour 313 standard (35 µg m⁻³) (NIER, 2023). Figures 8a–c show that PM₁₀, PM_{2.5}, and GOCI AOD share 314 similar spatial distributions. Annual trends in PM_{10} (-4.0 ± 1.7% a⁻¹), $PM_{2.5}$ (-5.0 ± 1.6% a⁻¹), 315 and AOD $(-5.5 \pm 2.7\% \text{ a}^{-1})$ over Korea during 2015–2023 are consistent (Figure 8d). J. Park et 316 al. (2024) found that 14% of the observed 33% decrease in PM_{2.5} during 2016–2022 over Korea 317 was attributable to the Chinese contribution.

Figure 8e shows seasonal mean hourly variations of surface PM_{2.5} and GOCI AOD. Surface PM_{2.5} peaks in winter to early spring, mostly attributable to sulfate-nitrate-ammonium aerosols (Zhai et al., 2021) and is minimum in summer during the monsoon period (H. M. Lee et al., 2024). Conversely, AOD peaks in spring and summer (March–August) due to dust events, chemical production of secondary aerosols, and hygroscopic growth at high relative humidity

(Zhai et al., 2021). PM_{2.5} peaks at 9–11 LT local time and then decreases until late afternoon as
the mixed layer grows and dilutes surface concentrations (Jordan et al., 2020). AOD rises in the
morning and peaks in midday reflecting photochemical production (Lennartson et al., 2018; P.
Kim et al., 2015).

327 2015-2021 PM_{2.5} observations in Seoul shows that all major PM_{2.5} components decreased 328 except for NO₃⁻, which accounts for 25% of total PM_{2.5} during winter to early spring (H. M. Lee 329 et al., 2024). Winter NO₃⁻ formation depends non-linearly on NO_x and NH₃ emissions, with 330 dominant sensitivity to either precursor that can be diagnosed from the NH₃/NO₂ VCD ratio and 331 the NO₂ VCD in satellite observations (Dang et al., 2023; 2024). Figures 9a-b compare 2021 332 CAPSS NH₃ emissions and 2023 average NH₃ VCDs observed by IASI. 76% of anthropogenic 333 NH₃ emissions in Korea originate from livestock manure management according to CAPSS. 334 Transportation is also a significant source in urban areas (T. Park et al., 2023). Highest VCDs are 335 found in the southern SMA, where livestock farming is concentrated, and corresponding to a 336 PM_{2.5} hotspot (Figure 8b). Despite high NH₃ emissions in the southeast coast, VCD 337 enhancements are not observed there due to high SO₂ emissions (Figure 3a) and expected high SO₄²⁻ production converting gas-phase NH₃ to particle-phase ammonium (NH₄⁺). Figure 9d 338 339 indicates that annual total NH₃ emissions have shown little change while NH₃ VCDs have significantly increased since 2015. Decreases in SO₂ emissions and the resulting SO_4^{2-} in both 340 341 Korea and China have left more NH₃ available for NO₃⁻ formation (J. Jeong et al., 2022). 342 Figure 9c shows NO₃⁻ sensitivity regimes inferred from GEMS NO₂ and IASI NH₃ VCDs 343 during the cold season (October–March) in 2023, as diagnosed using the winter threshold from 344 Dang et al. (2024). Figure 9e shows the evolution of the sensitivity regimes inferred from OMI 345 NO₂ and IASI NH₃ from 2015 to 2023. As NO_x emissions have decreased, we find that NO₃⁻ 346 formation over Korea has transited from an NH3-sensitive to a NOx-sensitive regime. NH3-347 sensitive conditions are now largely limited to parts of the SMA, and as NO_x emissions continue 348 to decrease we can expect NO_3^- formation to be controlled by NO_x emissions everywhere. Our 349 analysis indicates that Korea will increasingly benefit from controlling NO_x emissions to 350 improve both O₃ and PM_{2.5} air quality in the future. 351

4. Conclusions

We analyzed the distributions and 2015–2023 trends of major air pollutants in South Korea using the AirKorea surface network and satellite observations. Air quality in Korea has improved for primary pollutants over the past two decades, but surface O₃ and PM_{2.5} still widely exceed national standards despite emission controls.

Surface CO and SO₂ levels have stayed below air quality standards since the late 1990s, while NO₂ is now below the air quality standard at almost all AirKorea sites. Anthropogenic CO and SO₂ show steady and consistent declines from 2015 to 2023 in both surface concentrations and satellite vertical column densities (VCDs), consistent with the trends from the CAPSS national emissions inventory. NO₂ surface concentrations decreased by 32% from 2015 to 2023 while tropospheric NO₂ VCDs decreased by 36%, consistent with the 23% decrease of NO_x emissions in CAPSS.

364 Anthropogenic VOCs emissions, including a major contribution from aromatic compounds 365 (BTEX), show no significant trend from 2015 to 2023 in the CAPSS inventory. This is consistent 366 with BTEX observations at AirKorea sites and with HCHO and CHOCHO VCDs from satellites. 367 Satellite HCHO observations show contributions from both anthropogenic and biogenic VOCs, while CHOCHO is more specifically associated with BTEX. Diurnal variations of HCHO and 368 369 CHOCHO over the Seoul Metropolitan Area (SMA) observed from the GEMS geostationary 370 satellite instrument show a morning increase and a leveling off by midday. Aircraft vertical 371 columns over the SMA during the KORUS-AQ campaign show similar diurnal variations but a 372 late afternoon HCHO increase.

373 Surface O₃ levels in Korea peak in May–June, and observations at AirKorea sites show an average increase of 0.8 ppbv a⁻¹ in 90th percentile MDA8 O₃ from 2015 to 2023. Such an O₃ 374 375 increase has been attributed to the effect of NO_x emission reductions under VOC-sensitive 376 conditions for O₃ production. However, we find from the evolution of the satellite HCHO/NO₂ 377 ratio from 2015 to 2023 that the O₃ formation regime in Korea has been shifting from VOC- to 378 NO_x-sensitive. GEMS satellite observations for 2023 indicate that most regions in Korea are now 379 NO_x-sensitive or in a transition regime, and that VOC-sensitive conditions are confined to the 380 central SMA. We find that the O3 increase at AirKorea sites is limited to sites still in the VOC-381 sensitive regime, whereas there is no O₃ increase for sites in the transition or NO_x-limited 382 regimes. Our results suggest that O_3 across Korea is poised to decrease in response to continued 383 NO_x emission controls.

- Annual trends during 2015–2023 in PM₁₀, PM_{2.5}, and AOD show consistent decreases of
- 4-5% a⁻¹. Diurnal variations in AODs seen from the GOCI satellite instrument show the
- 386 importance of photochemical production as a source of PM. The only PM_{2.5} component not to
- 387 show a significant decrease over the 2015–2023 period is nitrate (NO_3^{-}). From the NH_3/NO_2
- ratio observed by satellites and its trend over the 2015–2023 period, we find that $PM_{2.5} NO_3^-$
- 389 formation in Korea was mostly NH₃-sensitive but has become increasingly NO_x-sensitive as NO_x
- 390 emissions have decreased. As of 2023, NO₃⁻ formation across Korea is dominantly NO_x-
- 391 sensitive except in parts of the SMA.
- 392 The vigorous NO_x emission controls in Korea starting in 2016 have not yet yielded results
- 393 for decreasing O₃ and PM_{2.5} NO₃⁻. However, our results show that they have effectively shifted
- O_3 production from a VOC-sensitive to a NO_x-sensitive regime and NO₃⁻ formation from an
- 395 NH₃-sensitive to a NO_x-sensitive regime. As NO_x emissions continue to decrease, the benefits
- 396 for decreasing O₃ and PM_{2.5} should become apparent.
- 397

398 Acknowledgement

- This research has been supported by the Samsung Advanced Institute of Technology (grant no.A41602).
- 401

402 Data availability

- 403 AirKorea surface network data are available at https://www.airkorea.or.kr/eng. CAPSS annual
- 404 emissions are available at https://www.air.go.kr/eng/main.do. KORUS-AQ aircraft data are
- 405 available at https://www-air.larc.nasa.gov/cgi-bin/ArcView/korusaq. Satellite products are
- 406 available at MOPITT CO https://l5ftl01.larc.nasa.gov:22000/misrl2l3/MOPITT/MOP03J.009/;
- 407 OMI SO₂ https://dx.doi.org/10.5067/Aura/OMI/DATA3008, NO₂
- 408 https://dx.doi.org/10.5067/Aura/OMI/DATA3007, HCHO
- 409 https://dx.doi.org/10.5067/Aura/OMI/DATA3010, CHOCHO
- 410 https://doi.org/10.7910/DVN/Q1O2UE; TROPOMI CO https://dx.doi.org/10.5270/S5P-bj3nry0,
- 411 NO₂ https://dx.doi.org/10.5270/S5P-9bnp8q8, HCHO https://dx.doi.org/10.5270/S5P-vg1i7t0;
- 412 IASI NH₃ https://iasi.aeris-data.fr/nh3/; GEMS SO₂, HCHO, CHOCHO https://nesc.nier.
- $413 \qquad go.kr/en/html/index.do, NO_2 \ https://doi.org/10.7910/DVN/ZQQJRO; \ GOCI \ AOD \ available \ upon$
- 414 request.
- 415

416 Author contributions

- 417 Original draft preparation, data processing, analysis, investigation, and visualization were done
- 418 by YJO. DJJ contributed to project conceptualization. Review and editing were done by DJJ,
- 419 DCP, RD, HC, SL, and JK. DCP, NKC, and SK provided additional resources and support in
- 420 analysis.
- 421

422 **Competing interests**

- 423 The contact author has declared that none of the authors has any competing interests.
- 424

425 **References**

- Bae, M., Kim, B.-U., Kim, H. C., Kim, J., and Kim, S.: Role of emissions and meteorology in the
 recent PM2.5 changes in China and South Korea from 2015 to 2018, Environmental
 Pollution, 270, 116233, https://doi.org/10.1016/j.envpol.2020.116233, 2021.
- Bae, M., Kim, S., and Kim, S.: Quantitative Evaluation on the Drivers of PM2.5 Concentration
 Change in South Korea during the 1st 3rd Seasonal PM2.5 Management Periods,
 Journal of Korean Society for Atmospheric Environment (Korean), 38, 610-623,
 10.5572/KOSAE.2022.38.4.610, 2022.
- Bates, K. H., Jacob, D. J., Li, K., Ivatt, P. D., Evans, M. J., Yan, Y., and Lin, J.: Development
 and evaluation of a new compact mechanism for aromatic oxidation in atmospheric
 models, Atmos. Chem. Phys., 21, 18351-18374, 10.5194/acp-21-18351-2021, 2021.
- Beaudry, E., Jacob, D. J., Bates, K. H., Zhai, S., Yang, L. H., Pendergrass, D. C., Colombi, N.
 K., Simpson, I. J., Wisthaler, A., Hopkins, J. R., Li, K., and Liao, H.: Ethanol and
 methanol in South Korea and China: evidence for large emissions of volatile chemical
 products (VCPs), submitted to ACS ES&T Air, 2024.
- Chan Miller, C., Jacob, D. J., Marais, E. A., Yu, K., Travis, K. R., Kim, P. S., Fisher, J. A., Zhu,
 L., Wolfe, G. M., Hanisco, T. F., Keutsch, F. N., Kaiser, J., Min, K. E., Brown, S. S.,
 Washenfelder, R. A., González Abad, G., and Chance, K.: Glyoxal yield from isoprene
 oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX
 aircraft observations, and interpretation of OMI satellite data, Atmos. Chem. Phys., 17,
 8725-8738, 10.5194/acp-17-8725-2017, 2017.
- Chen, Y., Liu, C., Su, W., Hu, Q., Zhang, C., Liu, H., and Yin, H.: Identification of volatile
 organic compound emissions from anthropogenic and biogenic sources based on satellite
 observation of formaldehyde and glyoxal, Science of The Total Environment, 859,
 159997, https://doi.org/10.1016/j.scitotenv.2022.159997, 2023.
- Cho, C., Clair, J. M. S., Liao, J., Wolfe, G. M., Jeong, S., Kang, D. i., Choi, J., Shin, M.-H., Park,
 J., Park, J.-H., Fried, A., Weinheimer, A., Blake, D. R., Diskin, G. S., Ullmann, K., Hall,
 S. R., Brune, W. H., Hanisco, T. F., and Min, K.-E.: Evolution of formaldehyde (HCHO)
 in a plume originating from a petrochemical industry and its volatile organic compounds
 (VOCs) emission rate estimation, Elementa: Science of the Anthropocene, 9,
 10.1525/elementa.2021.00015, 2021.
- Cho, J.-H., Kim, H.-S., and Yoon, M.-B.: The influence of atmospheric blocking on regional
 PM10 aerosol transport to South Korea during February–March of 2019, Atmospheric
 Environment, 277, 119056, https://doi.org/10.1016/j.atmosenv.2022.119056, 2022.

- Choi, J., Henze, D. K., Nawaz, M. O., and Malley, C. S.: Source Attribution of Health Burdens
 From Ambient PM2.5, O3, and NO2 Exposure for Assessment of South Korean National
 Emission Control Scenarios by 2050, GeoHealth, 8, e2024GH001042,
 https://doi.org/10.1029/2024GH001042, 2024.
- Choi, J., Henze, D. K., Cao, H., Nowlan, C. R., González Abad, G., Kwon, H.-A., Lee, H.-M.,
 Oak, Y. J., Park, R. J., Bates, K. H., Maasakkers, J. D., Wisthaler, A., and Weinheimer,
 A. J.: An Inversion Framework for Optimizing Non-Methane VOC Emissions Using
 Remote Sensing and Airborne Observations in Northeast Asia During the KORUS-AQ
 Field Campaign, Journal of Geophysical Research: Atmospheres, 127, e2021JD035844,
- 468 https://doi.org/10.1029/2021JD035844, 2022.
- Choi, M., Kim, J., Lee, J., Kim, M., Park, Y. J., Holben, B., Eck, T. F., Li, Z., and Song, C. H.:
 GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error
 analysis with uncertainty estimation from 5-year validation over East Asia, Atmos. Meas.
 Tech., 11, 385-408, 10.5194/amt-11-385-2018, 2018.
- Choi, S.-W., Kim, T., Lee, H.-K., Kim, H.-C., Han, J., Lee, K.-B., Lim, E.-h., Shin, S.-H., Jin,
 H.-A., Cho, E., Kim, Y.-M., and Yoo, C.: Analysis of the National Air Pollutant
 Emission Inventory (CAPSS 2016) and the Major Cause of Change in Republic of Korea,
 Asian Journal of Atmospheric Environment, 14, 422-445, 10.5572/ajae.2020.14.4.422,
 2020.
- Choi, S.-w., Cho, H., Hong, Y., Jo, H.-j., Park, M., Lee, H.-j., Choi, Y.-j., Shin, H.-h., Lee, D.,
 Shin, E., Baek, W., Park, S.-k., Kim, E., Kim, H.-c., Song, S.-j., Park, Y., Kim, J., Baek,
 J., Kim, J., and Yoo, C.: Analysis of the National Air Pollutant Emissions Inventory
 (CAPSS 2018) Data and Assessment of Emissions Based on Air Quality Modeling in the
 Republic of Korea, Asian Journal of Atmospheric Environment, 16, 2022084,
 10.5572/ajae.2022.084, 2022.
- Choi, Y., Kanaya, Y., Takashima, H., Park, K., Lee, H., Chong, J., Kim, J. H., and Park, J.-S.:
 Changes in Tropospheric Nitrogen Dioxide Vertical Column Densities over Japan and
 Korea during the COVID-19 Using Pandora and MAX-DOAS, Aerosol and Air Quality
 Research, 23, 220145, 10.4209/aaqr.220145, 2023.
- Chong, H., Lee, S., Cho, Y., Kim, J., Koo, J.-H., Pyo Kim, Y., Kim, Y., Woo, J.-H., and Hyun
 Ahn, D.: Assessment of air quality in North Korea from satellite observations,
 Environment International, 171, 107708, https://doi.org/10.1016/j.envint.2022.107708,
 2023.
- Chong, H., Lee, S., Kim, J., Jeong, U., Li, C., Krotkov, N., Nowlan, C., Al-Saadi, J., Janz, S.,
 Kowalewski, M., Ahn, M.-H., Kang, M., Joanna, J., Haffner, D., Hu, L., Castellanos, P.,
 Huey, L., Choi, M., Song, C., and Koo, J. H.: High-resolution mapping of SO2 using
 airborne observations from the GeoTASO instrument during the KORUS-AQ field study:
 PCA-based vertical column retrievals, Remote Sensing of Environment, 241, 111725,
- 497 10.1016/j.rse.2020.111725, 2020.
- Clarisse, L., Franco, B., Van Damme, M., Di Gioacchino, T., Hadji-Lazaro, J., Whitburn, S.,
 Noppen, L., Hurtmans, D., Clerbaux, C., and Coheur, P.: The IASI NH3 version 4
 product: averaging kernels and improved consistency, Atmos. Meas. Tech., 16, 5009501 5028, 10.5194/amt-16-5009-2023, 2023.
- Colombi, N. K., Jacob, D. J., Yang, L. H., Zhai, S., Shah, V., Grange, S. K., Yantosca, R. M.,
 Kim, S., and Liao, H.: Why is ozone in South Korea and the Seoul metropolitan area so

- 504high and increasing?, Atmos. Chem. Phys., 23, 4031-4044, 10.5194/acp-23-4031-2023,5052023.
- Crawford, J. H., Ahn, J.-Y., Al-Saadi, J., Chang, L., Emmons, L. K., Kim, J., Lee, G., Park, J.H., Park, R. J., Woo, J. H., Song, C.-K., Hong, J.-H., Hong, Y.-D., Lefer, B. L., Lee, M.,
 Lee, T., Kim, S., Min, K.-E., Yum, S. S., Shin, H. J., Kim, Y.-W., Choi, J.-S., Park, J.-S.,
 Szykman, J. J., Long, R. W., Jordan, C. E., Simpson, I. J., Fried, A., Dibb, J. E., Cho, S.,
 and Kim, Y. P.: The Korea–United States Air Quality (KORUS-AQ) field study,
- 511 Elementa: Science of the Anthropocene, 9, 10.1525/elementa.2020.00163, 2021.
- 512 Dang, R., Jacob, D. J., Zhai, S., Coheur, P., Clarisse, L., Van Damme, M., Pendergrass, D. C.,
 513 Choi, J.-s., Park, J.-s., Liu, Z., and Liao, H.: Diagnosing the Sensitivity of Particulate
 514 Nitrate to Precursor Emissions Using Satellite Observations of Ammonia and Nitrogen
 515 Dioxide, Geophysical Research Letters, 50, e2023GL105761,
 516 https://doi.org/10.1029/2023GL105761, 2023.
- 517 Dang, R., Jacob, D. J., Zhai, S., Yang, L. H., Pendergrass, D. C., Coheur, P., Clarisse, L., Van
 518 Damme, M., Choi, J.-s., Park, J.-s., Liu, Z., Xie, P., and Liao, H.: A Satellite-Based
 519 Indicator for Diagnosing Particulate Nitrate Sensitivity to Precursor Emissions:
 520 Application to East Asia, Europe, and North America, Environmental Science &
 521 Technology, 10.1021/acs.est.4c08082, 2024.
- Deeter, M., Francis, G., Gille, J., Mao, D., Martínez-Alonso, S., Worden, H., Ziskin, D.,
 Drummond, J., Commane, R., Diskin, G., and McKain, K.: The MOPITT Version 9 CO
 product: sampling enhancements and validation, Atmos. Meas. Tech., 15, 2325-2344,
 10.5194/amt-15-2325-2022, 2022.
- De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S., Van Roozendael, M.,
 Richter, A., Hilboll, A., Peters, E., Pedergnana, M., Loyola, D., Beirle, S., Wagner, T.,
 Eskes, H., van Geffen, J., Boersma, K. F., and Veefkind, P.: Algorithm theoretical
 baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV
 project, Atmos. Meas. Tech., 11, 2395-2426, 10.5194/amt-11-2395-2018, 2018.
- Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin, R. V., Lamsal, L., Hu, Y.,
 Pickering, K. E., Retscher, C., Allen, D. J., and Crawford, J. H.: Application of OMI
 observations to a space-based indicator of NOx and VOC controls on surface ozone
 formation, Atmospheric Environment, 44, 2213-2223,
 https://doi.org/10.1016/j.atmosenv.2010.03.010, 2010.
- Edwards, D. P., Emmons, L. K., Hauglustaine, D. A., Chu, D. A., Gille, J. C., Kaufman, Y. J.,
 Pétron, G., Yurganov, L. N., Giglio, L., Deeter, M. N., Yudin, V., Ziskin, D. C., Warner,
 J., Lamarque, J.-F., Francis, G. L., Ho, S. P., Mao, D., Chen, J., Grechko, E. I., and
 Drummond, J. R.: Observations of carbon monoxide and aerosols from the Terra satellite:
 Northern Hemisphere variability, Journal of Geophysical Research: Atmospheres, 109,
 https://doi.org/10.1029/2004JD004727, 2004.
- Fried, A., Walega, J., Weibring, P., Richter, D., Simpson, I. J., Blake, D. R., Blake, N. J.,
 Meinardi, S., Barletta, B., Hughes, S. C., Crawford, J. H., Diskin, G., Barrick, J., Hair, J.,
 Fenn, M., Wisthaler, A., Mikoviny, T., Woo, J.-H., Park, M., Kim, J., Min, K.-E., Jeong,
 S., Wennberg, P. O., Kim, M. J., Crounse, J. D., Teng, A. P., Bennett, R., Yang-Martin,
 M., Shook, M. A., Huey, G., Tanner, D., Knote, C., Kim, J., Park, R., and Brune, W.:
 Airborne formaldehyde and volatile organic compound measurements over the Daesan
 petrochemical complex on Korea's northwest coast during the Korea-United States Air

- Quality study: Estimation of emission fluxes and effects on air quality, Elementa: Science
 of the Anthropocene, 8, 10.1525/elementa.2020.121, 2020.
 Gaubert, B., Emmons, L. K., Raeder, K., Tilmes, S., Miyazaki, K., Arellano Jr, A. F., Elguindi,
- Solution, D., Ehmons, E. K., Racdel, K., Hindes, S., Wryazaki, K., Michaio SI, M. F., Elgundi,
 N., GraNIER, C., Tang, W., Barré, J., Worden, H. M., Buchholz, R. R., Edwards, D. P.,
 Franke, P., Anderson, J. L., Saunois, M., Schroeder, J., Woo, J. H., Simpson, I. J., Blake,
 D. R., Meinardi, S., Wennberg, P. O., Crounse, J., Teng, A., Kim, M., Dickerson, R. R.,
 He, H., Ren, X., Pusede, S. E., and Diskin, G. S.: Correcting model biases of CO in East
 Asia: impact on oxidant distributions during KORUS-AQ, Atmos. Chem. Phys., 20,
 14617-14647, 10.5194/acp-20-14617-2020, 2020.
- Gaudel, A., Cooper, O. R., Ancellet, G., Barret, B., Boynard, A., Burrows, J. P., Clerbaux, C.,
 Coheur, P.-F., Cuesta, J., Cuevas, E., Doniki, S., Dufour, G., Ebojie, F., Foret, G., Garcia,
 O., Granados-Muñoz, M. J., Hannigan, J. W., Hase, F., Hassler, B., Huang, G.,
 Hurtmans, D., Jaffe, D., Jones, N., Kalabokas, P., Kerridge, B., Kulawik, S., Latter, B.,
- 562 Leblanc, T., Le Flochmoën, E., Lin, W., Liu, J., Liu, X., Mahieu, E., McClure-Begley,
- 563 A., Neu, J. L., Osman, M., Palm, M., Petetin, H., Petropavlovskikh, I., Querel, R.,
- 564 Rahpoe, N., Rozanov, A., Schultz, M. G., Schwab, J., Siddans, R., Smale, D.,
- 565 Steinbacher, M., Tanimoto, H., Tarasick, D. W., Thouret, V., Thompson, A. M., Trickl, 566 T., Weatherhead, E., Wespes, C., Worden, H. M., Vigouroux, C., Xu, X., Zeng, G., and
- 567 Ziemke, J.: Tropospheric Ozone Assessment Report: Present-day distribution and trends
 568 of tropospheric ozone relevant to climate and global atmospheric chemistry model
 569 evaluation, Elementa: Science of the Anthropocene, 6, 10.1525/elementa.291, 2018.
- González Abad, G., Liu, X., Chance, K., Wang, H., Kurosu, T. P., and Suleiman, R.: Updated
 Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI)
 formaldehyde retrieval, Atmos. Meas. Tech., 8, 19-32, 10.5194/amt-8-19-2015, 2015.
- Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and
 Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1
 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions,
 Geosci. Model Dev., 5, 1471-1492, 10.5194/gmd-5-1471-2012, 2012.
- Ha, E. S., Park, R. J., Kwon, H. A., Lee, G. T., Lee, S. D., Shin, S., Lee, D. W., Hong, H., Lerot,
 C., De Smedt, I., Danckaert, T., Hendrick, F., and Irie, H.: First evaluation of the GEMS
 glyoxal products against TROPOMI and ground-based measurements, Atmos. Meas.
 Tech., 17, 6369-6384, 10.5194/amt-17-6369-2024, 2024.
- He, H., Liang, X. Z., Sun, C., Tao, Z., and Tong, D. Q.: The long-term trend and production
 sensitivity change in the US ozone pollution from observations and model simulations,
 Atmos. Chem. Phys., 20, 3191-3208, 10.5194/acp-20-3191-2020, 2020.
- Jang, Y., Eo, Y., Jang, M., Woo, J.-H., Kim, Y., Lee, J.-B., and Lim, J.-H.: Impact of Land
 Cover and Leaf Area Index on BVOC Emissions over the Korean Peninsula,
 Atmosphere, 11, 806, 2020.
- Jeong, J. I., Seo, J., and Park, R. J.: Compromised Improvement of Poor Visibility Due to PM
 Chemical Composition Changes in South Korea, Remote Sensing, 14, 5310, 2022.
- Jeong, J. I., Park, R. J., Song, C.-K., Yeh, S.-W., and Woo, J.-H.: Quantitative analysis of winter
 PM2.5 reduction in South Korea, 2019/20 to 2021/22: Contributions of meteorology and
 emissions, Science of The Total Environment, 907, 168179,
 https://doi.org/10.1016/j.scitotenv.2023.168179, 2024.
- Jordan, C. E., Crawford, J. H., Beyersdorf, A. J., Eck, T. F., Halliday, H. S., Nault, B. A., Chang,
 L.-S., Park, J., Park, R., Lee, G., Kim, H., Ahn, J.-y., Cho, S., Shin, H. J., Lee, J. H.,

595	Jung, J., Kim, DS., Lee, M., Lee, T., Whitehill, A., Szykman, J., Schueneman, M. K.,
596	Campuzano-Jost, P., Jimenez, J. L., DiGangi, J. P., Diskin, G. S., Anderson, B. E.,
597	Moore, R. H., Ziemba, L. D., Fenn, M. A., Hair, J. W., Kuehn, R. E., Holz, R. E., Chen,
598	G., Travis, K., Shook, M., Peterson, D. A., Lamb, K. D., and Schwarz, J. P.: Investigation
599	of factors controlling PM2.5 variability across the South Korean Peninsula during
600	KORUS-AO, Elementa: Science of the Anthropocene, 8, 10.1525/elementa.424, 2020.
601	Kaiser, J., Wolfe, G. M., Min, K. E., Brown, S. S., Miller, C. C., Jacob, D. J., deGouw, J. A.,
602	Graus, M., Hanisco, T. F., Holloway, J., Peischl, J., Pollack, I. B., Ryerson, T. B.,
603	Warneke, C., Washenfelder, R. A., and Keutsch, F. N.: Reassessing the ratio of glyoxal to
604	formaldehyde as an indicator of hydrocarbon precursor speciation. Atmos. Chem. Phys.
605	15, 7571-7583, 10.5194/acp-15-7571-2015, 2015.
606	Kim, E., Kim, H. C., Kim, BU., Woo, JH., Liu, Y., and Kim, S.: Development of surface
607	observation-based two-step emissions adjustment and its application on CO, NOx, and
608	SO2 emissions in China and South Korea, Science of The Total Environment, 907,
609	167818, https://doi.org/10.1016/j.scitotenv.2023.167818, 2024.
610	Kim, H., Park, R. J., Kim, S., Brune, W. H., Diskin, G. S., Fried, A., Hall, S. R., Weinheimer, A.
611	J., Wennberg, P., Wisthaler, A., Blake, D. R., and Ullmann, K.: Observed versus
612	simulated OH reactivity during KORUS-AQ campaign: Implications for emission
613	inventory and chemical environment in East Asia, Elementa: Science of the
614	Anthropocene, 10, 10.1525/elementa.2022.00030, 2022.
615	Kim, HK., Song, CK., Han, K. M., Eo, Y. D., Song, C. H., Park, R., Hong, SC., Kim, SK.,
616	and Woo, JH.: Impact of biogenic emissions on early summer ozone and fine particulate
617	matter exposure in the Seoul Metropolitan Area of Korea, Air Quality, Atmosphere &
618	Health, 11, 1021-1035, 10.1007/s11869-018-0602-4, 2018.
619	Kim, J., Park, J., Hu, H., Crippa, M., Guizzardi, D., Chatani, S., Kurokawa, J., Morikawa, T.,
620	Yeo, S., Jin, H., and Woo, JH.: Long-term historical trends in air pollutant emissions in
621	South Korea (2000–2018), Asian Journal of Atmospheric Environment, 17, 12,
622	10.1007/s44273-023-00013-w, 2023.
623	Kim, J., Jeong, U., Ahn, MH., Kim, J. H., Park, R. J., Lee, H., Song, C. H., Choi, YS., Lee,
624	KH., Yoo, JM., Jeong, MJ., Park, S. K., Lee, KM., Song, CK., Kim, SW., Kim,
625	Y. J., Kim, SW., Kim, M., Go, S., Liu, X., Chance, K., Chan Miller, C., Al-Saadi, J.,
626	Veihelmann, B., Bhartia, P. K., Torres, O., Abad, G. G., Haffner, D. P., Ko, D. H., Lee,
627	S. H., Woo, JH., Chong, H., Park, S. S., Nicks, D., Choi, W. J., Moon, KJ., Cho, A.,
628	Yoon, J., Kim, Sk., Hong, H., Lee, K., Lee, H., Lee, S., Choi, M., Veefkind, P., Levelt,
629	P. F., Edwards, D. P., Kang, M., Eo, M., Bak, J., Baek, K., Kwon, HA., Yang, J., Park,
630	J., Han, K. M., Kim, BR., Shin, HW., Choi, H., Lee, E., Chong, J., Cha, Y., Koo, J
631	H., Irie, H., Hayashida, S., Kasai, Y., Kanaya, Y., Liu, C., Lin, J., Crawford, J. H.,
632	Carmichael, G. R., Newchurch, M. J., Lefer, B. L., Herman, J. R., Swap, R. J., Lau, A. K.
633	H., Kurosu, T. P., Jaross, G., Ahlers, B., Dobber, M., McElroy, C. T., and Choi, Y.: New
634	Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring
635	Spectrometer (GEMS), Bulletin of the American Meteorological Society, 101, E1-E22,
636	https://doi.org/10.1175/BAMS-D-18-0013.1, 2020.
637	Kim, P. S., Jacob, D. J., Fisher, J. A., Travis, K., Yu, K., Zhu, L., Yantosca, R. M., Sulprizio, M.
638	P., Jimenez, J. L., Campuzano-Jost, P., Froyd, K. D., Liao, J., Hair, J. W., Fenn, M. A.,
639	Butler, C. F., Wagner, N. L., Gordon, T. D., Welti, A., Wennberg, P. O., Crounse, J. D.,
640	St. Clair, J. M., Teng, A. P., Millet, D. B., Schwarz, J. P., Markovic, M. Z., and Perring,

641 A. E.: Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of 642 surface, aircraft, and satellite observations with the GEOS-Chem chemical transport 643 model, Atmos. Chem. Phys., 15, 10411-10433, 10.5194/acp-15-10411-2015, 2015. 644 Kim, S., Jeong, D., Sanchez, D., Wang, M., Seco, R., Blake, D., Meinardi, S., Barletta, B., 645 Hughes, S., Jung, J., Kim, D., Lee, G., Lee, M., Ahn, J., Lee, S.-D., Cho, G., Sung, M.-646 Y., Lee, Y.-H., and Park, R.: The Controlling Factors of Photochemical Ozone 647 Production in Seoul, South Korea, Aerosol and Air Quality Research, 18, 2253-2261, 648 10.4209/aagr.2017.11.0452, 2018. 649 Kim, S.-J., Lee, S.-J., Lee, H.-Y., Park, H.-J., Kim, C.-H., Lim, H.-J., Lee, S.-B., Kim, J. Y., 650 Schlink, U., and Choi, S.-D.: Spatial-seasonal variations and source identification of 651 volatile organic compounds using passive air samplers in the metropolitan city of Seoul, 652 South Korea, Atmospheric Environment, 246, 118136, https://doi.org/10.1016/j.atmosenv.2020.118136, 2021. 653 654 Kim, S. W., Kim, K. M., Jeong, Y., Seo, S., Park, Y., and Kim, J.: Changes in surface ozone in 655 South Korea on diurnal to decadal timescales for the period of 2001–2021, Atmos. Chem. 656 Phys., 23, 12867-12886, 10.5194/acp-23-12867-2023, 2023. 657 Kim, Y. P. and Lee, G.: Trend of Air Quality in Seoul: Policy and Science, Aerosol and Air Quality Research, 18, 2141-2156, 10.4209/aagr.2018.03.0081, 2018. 658 Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H., Marchenko, S. V., Bucsela, E. J., 659 660 Chan, K. L., Wenig, M., and Zara, M.: The version 3 OMI NO2 standard product, Atmos. 661 Meas. Tech., 10, 3133-3149, 10.5194/amt-10-3133-2017, 2017 Kwon, H.-A., González Abad, G., Chan Miller, C., Hall, K. R., Nowlan, C. R., O'Sullivan, E., 662 663 Wang, H., Chong, H., Ayazpour, Z., Liu, X., and Chance, K.: Updated OMI Glyoxal Column Measurements Using Collection 4 Level 1B Radiances, Earth and Space 664 665 Science, 11, e2024EA003705, https://doi.org/10.1029/2024EA003705, 2024. 666 Kwon, H.-A., Park, R. J., Oak, Y. J., Nowlan, C. R., Janz, S. J., Kowalewski, M. G., Fried, A., Walega, J., Bates, K. H., Choi, J., Blake, D. R., Wisthaler, A., and Woo, J.-H.: Top-down 667 estimates of anthropogenic VOC emissions in South Korea using formaldehyde vertical 668 669 column densities from aircraft during the KORUS-AQ campaign, Elementa: Science of 670 the Anthropocene, 9, 10.1525/elementa.2021.00109, 2021. 671 Landgraf, J., aan de Brugh, J., Scheepmaker, R., Borsdorff, T., Hu, H., Houweling, S., Butz, A., 672 Aben, I., and Hasekamp, O.: Carbon monoxide total column retrievals from TROPOMI 673 shortwave infrared measurements, Atmos. Meas. Tech., 9, 4955-4975, 10.5194/amt-9-674 4955-2016, 2016. 675 Lee, G. T., Park, R. J., Kwon, H. A., Ha, E. S., Lee, S. D., Shin, S., Ahn, M. H., Kang, M., Choi, 676 Y. S., Kim, G., Lee, D. W., Kim, D. R., Hong, H., Langerock, B., Vigouroux, C., Lerot, C., Hendrick, F., Pinardi, G., De Smedt, I., Van Roozendael, M., Wang, P., Chong, H., 677 Cho, Y., and Kim, J.: First evaluation of the GEMS formaldehyde product against 678 679 TROPOMI and ground-based column measurements during the in-orbit test period, 680 Atmos. Chem. Phys., 24, 4733-4749, 10.5194/acp-24-4733-2024, 2024. 681 Lee, H.-J., Chang, L.-S., Jaffe, D. A., Bak, J., Liu, X., Abad, G. G., Jo, H.-Y., Jo, Y.-J., Lee, J.-682 B., and Kim, C.-H.: Ozone Continues to Increase in East Asia Despite Decreasing NO2: 683 Causes and Abatements, Remote Sensing, 13, 2177, 2021. 684 Lee, H.-M. and Park, R. J.: Factors determining the seasonal variation of ozone air quality in 685 South Korea: Regional background versus domestic emission contributions,

- 686 Environmental Pollution, 308, 119645, https://doi.org/10.1016/j.envpol.2022.119645, 687 2022.
- Lee, H.-M., Kim, N. K., Ahn, J., Park, S.-M., Lee, J. Y., and Kim, Y. P.: When and why PM2.5
 is high in Seoul, South Korea: Interpreting long-term (2015–2021) ground observations
 using machine learning and a chemical transport model, Science of The Total
 Environment, 920, 170822, https://doi.org/10.1016/j.scitotenv.2024.170822, 2024.
- Lee, S., Choi, M., Kim, J., Park, Y.-J., Choi, J.-K., Lim, H., Lee, J., Kim, M., and Cho, Y.:
 Retrieval of aerosol optical properties from GOCI-II observations: Continuation of longterm geostationary aerosol monitoring over East Asia, Science of The Total Environment, 903, 166504, https://doi.org/10.1016/j.scitotenv.2023.166504, 2023.
- Lee, Y., Won, S. R., Shin, H. J., Kim, D. G., and Lee, J. Y.: Seasonal Characteristics of Volatile
 Organic Compounds in Seoul, Korea: Major Sources and Contribution to Secondary
 Organic Aerosol Formation, Aerosol and Air Quality Research, 23, 220429,
 10.4209/aaqr.220429, 2023.
- Lennartson, E. M., Wang, J., Gu, J., Castro Garcia, L., Ge, C., Gao, M., Choi, M., Saide, P. E.,
 Carmichael, G. R., Kim, J., and Janz, S. J.: Diurnal variation of aerosol optical depth and
 PM2.5 in South Korea: a synthesis from AERONET, satellite (GOCI), KORUS-AQ
 observation, and the WRF-Chem model, Atmos. Chem. Phys., 18, 15125-15144,
 10.5194/acp-18-15125-2018, 2018.
- Levelt, P. F., Oord, G. H. J. v. d., Dobber, M. R., Malkki, A., Huib, V., Johan de, V., Stammes,
 P., Lundell, J. O. V., and Saari, H.: The ozone monitoring instrument, IEEE Transactions
 on Geoscience and Remote Sensing, 44, 1093-1101, 10.1109/TGRS.2006.872333, 2006.
- Li, J., Mao, J., Min, K.-E., Washenfelder, R. A., Brown, S. S., Kaiser, J., Keutsch, F. N.,
 Volkamer, R., Wolfe, G. M., Hanisco, T. F., Pollack, I. B., Ryerson, T. B., Graus, M.,
 Gilman, J. B., Lerner, B. M., Warneke, C., de Gouw, J. A., Middlebrook, A. M., Liao, J.,
 Welti, A., Henderson, B. H., McNeill, V. F., Hall, S. R., Ullmann, K., Donner, L. J.,
 Paulot, F., and Horowitz, L. W.: Observational constraints on glyoxal production from
 isoprene oxidation and its contribution to organic aerosol over the Southeast United
 States, Journal of Geophysical Research: Atmospheres, 121, 9849-9861,
- 715 https://doi.org/10.1002/2016JD025331, 2016.
- Li, C., Krotkov, N. A., Leonard, P. J. T., Carn, S., Joiner, J., Spurr, R. J. D., and Vasilkov, A.:
 Version 2 Ozone Monitoring Instrument SO2 product (OMSO2 V2): new anthropogenic
 SO2 vertical column density dataset, Atmos. Meas. Tech., 13, 6175-6191, 10.5194/amt13-6175-2020, 2020.
- Li, K., Jacob, D. J., Liao, H., Qiu, Y., Shen, L., Zhai, S., Bates, K. H., Sulprizio, M. P., Song, S.,
 Lu, X., Zhang, Q., Zheng, B., Zhang, Y., Zhang, J., Lee, H. C., and Kuk, S. K.: Ozone
 pollution in the North China Plain spreading into the late-winter haze season,
 Proceedings of the National Academy of Sciences, 118, e2015797118,
 doi:10.1073/pnas.2015797118, 2021.
- Martin, R. V., Fiore, A. M., and Van Donkelaar, A.: Space-based diagnosis of surface ozone
 sensitivity to anthropogenic emissions, Geophysical Research Letters, 31,
 https://doi.org/10.1029/2004GL019416, 2004.

Moutinho, J. L., Liang, D., Golan, R., Sarnat, S. E., Weber, R., Sarnat, J. A., and Russell, A. G.: Near-road vehicle emissions air quality monitoring for exposure modeling, Atmospheric Environment, 224, 117318, https://doi.org/10.1016/j.atmosenv.2020.117318, 2020.

- NIER: Geostationary Environment Monitoring Spectrometer (GEMS) Algorithm Theoretical
 Basis Document SO₂ Retrieval Algorithm,
- 733 https://nesc.nier.go.kr/en/html/satellite/doc/doc.do, 2020.
- 734 NIER: 2022 Air Quality Annual Report (Korean),
- 735 https://airkorea.or.kr/web/detailViewDown?pMENU_NO=125, 2023.
- Oak, Y. J., Park, R. J., Lee, J.-T., and Byun, G.: Future air quality and premature mortality in
 Korea, Science of The Total Environment, 865, 161134,
 https://doi.org/10.1016/j.scitotenv.2022.161134, 2023.
- Oak, Y. J., Jacob, D. J., Balasus, N., Yang, L. H., Chong, H., Park, J., Lee, H., Lee, G. T., Ha, E.
 S., Park, R. J., Kwon, H. A., and Kim, J.: A bias-corrected GEMS geostationary satellite
 product for nitrogen dioxide using machine learning to enforce consistency with the
 TROPOMI satellite instrument, EGUsphere, 2024, 1-19, 10.5194/egusphere-2024-393,
 2024.
- Oak, Y. J., Park, R. J., Schroeder, J. R., Crawford, J. H., Blake, D. R., Weinheimer, A. J., Woo,
 J.-H., Kim, S.-W., Yeo, H., Fried, A., Wisthaler, A., and Brune, W. H.: Evaluation of
 simulated O3 production efficiency during the KORUS-AQ campaign: Implications for
 anthropogenic NOx emissions in Korea, Elementa: Science of the Anthropocene, 7,
 10.1525/elementa.394, 2019.
- Oak, Y. J., Park, R. J., Jo, D. S., Hodzic, A., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A.,
 Kim, H., Kim, H., Ha, E. S., Song, C.-K., Yi, S.-M., Diskin, G. S., Weinheimer, A. J.,
 Blake, D. R., Wisthaler, A., Shim, M., and Shin, Y.: Evaluation of Secondary Organic
 Aerosol (SOA) Simulations for Seoul, Korea, Journal of Advances in Modeling Earth
 Systems, 14, e2021MS002760, https://doi.org/10.1029/2021MS002760, 2022.
- Palmer, P. I., Jacob, D. J., Fiore, A. M., Martin, R. V., Chance, K., and Kurosu, T. P.: Mapping
 isoprene emissions over North America using formaldehyde column observations from
 space, Journal of Geophysical Research: Atmospheres, 108,
 https://doi.org/10.1029/2002JD002153, 2003.
- Park, D.-H., Kim, S.-W., Kim, M.-H., Yeo, H., Park, S. S., Nishizawa, T., Shimizu, A., and Kim,
 C.-H.: Impacts of local versus long-range transported aerosols on PM10 concentrations in
 Seoul, Korea: An estimate based on 11-year PM10 and lidar observations, Science of The
 Total Environment, 750, 141739, https://doi.org/10.1016/j.scitotenv.2020.141739, 2021.
- Park, J. P., Kim, E. K., Kang, Y.-H. K., and Kim, S.: Assessment of Provincial Air Quality based
 on Air Quality Index during 2016~2022, Journal of Korean Society for Atmospheric
 Environment (Korean), 40, 225-241, 2024.
- Park, R. J., Oak, Y. J., Emmons, L. K., Kim, C.-H., Pfister, G. G., Carmichael, G. R., Saide, P.
 E., Cho, S.-Y., Kim, S., Woo, J.-H., Crawford, J. H., Gaubert, B., Lee, H.-J., Park, S.-Y.,
 Jo, Y.-J., Gao, M., Tang, B., Stanier, C. O., Shin, S. S., Park, H. Y., Bae, C., and Kim, E.:
 Multi-model intercomparisons of air quality simulations for the KORUS-AQ campaign,
 Elementa: Science of the Anthropocene, 9, 10.1525/elementa.2021.00139, 2021.
- Park, T., Singh, R., Ban, J., Kim, K., Park, G., Kang, S., Choi, S., Song, J., Yu, D.-G., Bae, M.S., Ahn, J., Jung, H.-J., Lim, Y.-J., Kim, H. W., Hwang, T. K., Choi, Y. J., Kim, S.-Y.,
 Kim, H. S., Chang, Y. W., Shin, H. J., Lim, Y., Lee, J., Park, J., Choi, J., and Lee, T.:
 Seasonal and regional variations of atmospheric ammonia across the South Korean
 Peninsula, Asian Journal of Atmospheric Environment, 17, 6, 10.1007/s44273-02300008-7, 2023.

- Parrish, D. D., Kuster, W. C., Shao, M., Yokouchi, Y., Kondo, Y., Goldan, P. D., de Gouw, J.
 A., Koike, M., and Shirai, T.: Comparison of air pollutant emissions among mega-cities, Atmospheric Environment, 43, 6435-6441,
 https://doi.org/10.1016/j.atmospheric.2000.06.024, 2000.
- 779 https://doi.org/10.1016/j.atmosenv.2009.06.024, 2009.
- Pendergrass, D. C., Zhai, S., Kim, J., Koo, J. H., Lee, S., Bae, M., Kim, S., Liao, H., and Jacob,
 D. J.: Continuous mapping of fine particulate matter (PM2.5) air quality in East Asia at
 daily 6  ×  6 km2 resolution by application of a random forest
 algorithm to 2011–2019 GOCI geostationary satellite data, Atmos. Meas. Tech., 15,
 1075-1091, 10.5194/amt-15-1075-2022, 2022.
- Pendergrass, D. C., Jacob, D. J., Oak, Y. J., Lee, J., Kim, M., Kim, J., Lee, S., Zhai, S., Irie, H.,
 and Liao, H.: A continuous 2011-2022 record of fine particulate matter (PM2.5) in East
 Asia at daily 2-km resolution from geostationary satellite observations: population
 exposure and long-term trends, Earth Syst. Sci. Data Discuss., 2024, 1-27, 10.5194/essd2024-172, 2024.
- Seo, J., Park, D. S. R., Kim, J. Y., Youn, D., Lim, Y. B., and Kim, Y.: Effects of meteorology and emissions on urban air quality: a quantitative statistical approach to long-term records (1999–2016) in Seoul, South Korea, Atmos. Chem. Phys., 18, 16121-16137, 10.5194/acp-18-16121-2018, 2018.
- Seo, S., Kim, S.-W., Kim, K.-M., Lamsal, L. N., and Jin, H.: Reductions in NO2 concentrations
 in Seoul, South Korea detected from space and ground-based monitors prior to and
 during the COVID-19 pandemic, Environmental Research Communications, 3, 051005,
 10.1088/2515-7620/abed92, 2021.
- Seo, Y.-K., Suvarapu, L., and Baek, S.-O.: Characterization of Odorous Compounds (VOC and Carbonyl Compounds) in the Ambient Air of Yeosu and Gwangyang, Large Industrial Areas of South Korea, TheScientificWorldJournal, 2014, 824301, 10.1155/2014/824301, 2014.
- Shah, V., Jacob, D. J., Li, K., Silvern, R. F., Zhai, S., Liu, M., Lin, J., and Zhang, Q.: Effect of
 changing NOx lifetime on the seasonality and long-term trends of satellite-observed
 tropospheric NO2 columns over China, Atmos. Chem. Phys., 20, 1483-1495,
 10.5194/acp-20-1483-2020, 2020.
- Simpson, I. J., Blake, D. R., Blake, N. J., Meinardi, S., Barletta, B., Hughes, S. C., Fleming, L.
 T., Crawford, J. H., Diskin, G. S., Emmons, L. K., Fried, A., Guo, H., Peterson, D. A.,
 Wisthaler, A., Woo, J.-H., Barré, J., Gaubert, B., Kim, J., Kim, M. J., Kim, Y., Knote, C.,
 Mikoviny, T., Pusede, S. E., Schroeder, J. R., Wang, Y., Wennberg, P. O., and Zeng, L.:
 Characterization, sources and reactivity of volatile organic compounds (VOCs) in Seoul
 and surrounding regions during KORUS-AQ, Elementa: Science of the Anthropocene, 8,
 10.1525/elementa.434, 2020.
- Song, C.-K. and Lee, G.: Regional and Urban Air Quality in East Asia: South Korea, in:
 Handbook of Air Quality and Climate Change, edited by: Akimoto, H., and Tanimoto,
 H., Springer Nature Singapore, Singapore, 1-27, 10.1007/978-981-15-2527-8_70-1,
 2020.
- Song, S.-K., Shon, Z.-H., Kang, Y.-H., Kim, K.-H., Han, S.-B., Kang, M., Bang, J.-H., and Oh,
 I.: Source apportionment of VOCs and their impact on air quality and health in the
 megacity of Seoul, Environ Pollut, 247, 763-774, 10.1016/j.envpol.2019.01.102, 2019.
- 820 Souri, A. H., Nowlan, C. R., Wolfe, G. M., Lamsal, L. N., Chan Miller, C. E., Abad, G. G., Janz,
- 821 S. J., Fried, A., Blake, D. R., Weinheimer, A. J., Diskin, G. S., Liu, X., and Chance, K.:

- Revisiting the effectiveness of HCHO/NO2 ratios for inferring ozone sensitivity to its
 precursors using high resolution airborne remote sensing observations in a high ozone
 episode during the KORUS-AQ campaign, Atmospheric Environment, 224, 117341,
 https://doi.org/10.1016/j.atmosenv.2020.117341, 2020.
- Travis, K. R., Nault, B. A., Crawford, J. H., Bates, K. H., Blake, D. R., Cohen, R. C., Fried, A.,
 Hall, S. R., Huey, L. G., Lee, Y. R., Meinardi, S., Min, K. E., Simpson, I. J., and Ullman,
 K.: Impact of improved representation of volatile organic compound emissions and
 production of NOx reservoirs on modeled urban ozone production, Atmos. Chem. Phys.,
 24, 9555-9572, 10.5194/acp-24-9555-2024, 2024.
- US EPA: Trends in Ozone Adjusted for Weather Conditions, <u>https://www.epa.gov/air-</u>
 <u>trends/trends-ozone-adjusted-weather-conditions</u>, 2024.
- Van Damme, M., Clarisse, L., Heald, C. L., Hurtmans, D., Ngadi, Y., Clerbaux, C., Dolman, A.
 J., Erisman, J. W., and Coheur, P. F.: Global distributions, time series and error
 characterization of atmospheric ammonia (NH₃) from IASI satellite
 observations, Atmos. Chem. Phys., 14, 2905-2922, 10.5194/acp-14-2905-2014, 2014.
- van Geffen, J., Eskes, H., Compernolle, S., Pinardi, G., Verhoelst, T., Lambert, J. C., Sneep, M.,
 ter Linden, M., Ludewig, A., Boersma, K. F., and Veefkind, J. P.: Sentinel-5P TROPOMI
 NO2 retrieval: impact of version v2.2 improvements and comparisons with OMI and
 ground-based data, Atmos. Meas. Tech., 15, 2037-2060, 10.5194/amt-15-2037-2022,
 2022.
- Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J.,
 de Haan, J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J.,
 Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt,
 P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global
 observations of the atmospheric composition for climate, air quality and ozone layer
 applications, Remote Sensing of Environment, 120, 70-83,
- 848 https://doi.org/10.1016/j.rse.2011.09.027, 2012.
- Warneke, C., de Gouw, J. A., Holloway, J. S., Peischl, J., Ryerson, T. B., Atlas, E., Blake, D.,
 Trainer, M., and Parrish, D. D.: Multiyear trends in volatile organic compounds in Los
 Angeles, California: Five decades of decreasing emissions, Journal of Geophysical
 Research: Atmospheres, 117, https://doi.org/10.1029/2012JD017899, 2012.
- Yang, L. H., Jacob, D. J., Colombi, N. K., Zhai, S., Bates, K. H., Shah, V., Beaudry, E.,
 Yantosca, R. M., Lin, H., Brewer, J. F., Chong, H., Travis, K. R., Crawford, J. H.,
 Lamsal, L. N., Koo, J. H., and Kim, J.: Tropospheric NO2 vertical profiles over South
 Korea and their relation to oxidant chemistry: implications for geostationary satellite
 retrievals and the observation of NO2 diurnal variation from space, Atmos. Chem. Phys.,
 23, 2465-2481, 10.5194/acp-23-2465-2023, 2023.
- Yang, L. H., Jacob, D. J., Dang, R., Oak, Y. J., Lin, H., Kim, J., Zhai, S., Colombi, N. K.,
 Pendergrass, D. C., Beaudry, E., Shah, V., Feng, X., Yantosca, R. M., Chong, H., Park,
 J., Lee, H., Lee, W. J., Kim, S., Kim, E., Travis, K. R., Crawford, J. H., and Liao, H.:
 Interpreting Geostationary Environment Monitoring Spectrometer (GEMS) geostationary
 satellite observations of the diurnal variation in nitrogen dioxide (NO2) over East Asia,
 Atmos. Chem. Phys., 24, 7027-7039, 10.5194/acp-24-7027-2024, 2024.
- Yeo, M. J. and Kim, Y.: Long-term trends and affecting factors in the concentrations of criteria
 air pollutants in South Korea, Journal of Environmental Management, 317, 115458,
 10.1016/j.jenvman.2022.115458, 2022.

- Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.:
 Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions
 from anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 11031-11041,
 10.5194/acp-19-11031-2019, 2019.
- 872 Zhai, S., Jacob, D. J., Brewer, J. F., Li, K., Moch, J. M., Kim, J., Lee, S., Lim, H., Lee, H. C., 873 Kuk, S. K., Park, R. J., Jeong, J. I., Wang, X., Liu, P., Luo, G., Yu, F., Meng, J., Martin, 874 R. V., Travis, K. R., Hair, J. W., Anderson, B. E., Dibb, J. E., Jimenez, J. L., Campuzano-875 Jost, P., Nault, B. A., Woo, J. H., Kim, Y., Zhang, Q., and Liao, H.: Relating 876 geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to 877 fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and 878 GEOS-Chem model simulations, Atmos. Chem. Phys., 21, 16775-16791, 10.5194/acp-879 21-16775-2021, 2021.
- Zhu, L., Jacob, D. J., Mickley, L. J., Marais, E. A., Cohan, D. S., Yoshida, Y., Duncan, B. N.,
 González Abad, G., and Chance, K. V.: Anthropogenic emissions of highly reactive
 volatile organic compounds in eastern Texas inferred from oversampling of satellite
 (OMI) measurements of HCHO columns, Environmental Research Letters, 9, 114004,
 10.1088/1748-9326/9/11/114004, 2014.
- Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis, K. R., Mickley, L. J., Yantosca, R.
 M., Sulprizio, M. P., De Smedt, I., González Abad, G., Chance, K., Li, C., Ferrare, R.,
 Fried, A., Hair, J. W., Hanisco, T. F., Richter, D., Jo Scarino, A., Walega, J., Weibring,
 P., and Wolfe, G. M.: Observing atmospheric formaldehyde (HCHO) from space:
 validation and intercomparison of six retrievals from four satellites (OMI, GOME2A,
 GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US, Atmos.
 Chem. Phys., 16, 13477-13490, 10.5194/acp-16-13477-2016, 2016.
- Zhu, L., González Abad, G., Nowlan, C. R., Chan Miller, C., Chance, K., Apel, E. C., DiGangi,
 J. P., Fried, A., Hanisco, T. F., Hornbrook, R. S., Hu, L., Kaiser, J., Keutsch, F. N.,
- 894 Permar, W., St. Clair, J. M., and Wolfe, G. M.: Validation of satellite formaldehyde
- 895 (HCHO) retrievals using observations from 12 aircraft campaigns, Atmos. Chem. Phys.,
- 896 20, 12329-12345, 10.5194/acp-20-12329-2020, 2020.
- 897

898 Figures

- 900 Figure 1. Geographic locations of major source regions in South Korea. Major cities and industrial
- complexes are indicated in white and yellow colors. The Seoul Metropolitan Area (SMA) is defined as
 the rectangular domain covering 37–37.8° N and 126.4–127.5° E. Background surface imagery is from ©
- 903 Google Earth.

905Figure 2. Annual mean CO distributions and trends in South Korea. Top panels show spatial906distributions of (a) 2021 anthropogenic CO emissions from CAPSS, (b-c) 2023 average AirKorea surface907CO concentrations and TROPOMI CO vertical column densities (VCDs). VCDs are mapped on a $0.1^{\circ} \times$ 908 0.1° grid. Lower panel (d) shows 2015–2023 trends in CAPSS CO emissions, surface CO averaged over909all AirKorea sites, and CO VCDs from TROPOMI and MOPITT averaged over South Korea. Statistically910significant trends (*p*-value < 0.05) are given inset.</td>

912 Figure 3. Annual mean SO₂ distributions and trends in South Korea. Top panels show spatial

913 distributions of (a) 2021 anthropogenic SO₂ emissions from CAPSS, (b–c) 2023 average AirKorea

- 914 surface SO₂ concentrations and GEMS SO₂ VCDs. VCDs are mapped on a $0.1^{\circ} \times 0.1^{\circ}$ grid. Lower panel 915 (d) shows 2015–2023 trends in CAPSS SO₂ emissions, surface SO₂ averaged over all AirKorea sites, and
- 916 SO₂ VCDs from OMI and GEMS (sampled at OMI overpass time) averaged over South Korea.
- 917 Statistically significant trends (*p*-value < 0.05) are given inset.

919 Figure 4. Annual mean NO₂ distributions and trends in South Korea. Top panels show spatial

920 distributions of (a) 2021 anthropogenic NO_x emissions from CAPSS, (b-c) 2023 average AirKorea 921 surface NO_x concentrations and GEMS transcriptoria NO_x VCDs are manual on a $0.1^{\circ} \times 0.1^{\circ}$ grid

- 922 Middle panel (d) shows 2015–2023 trends in CAPSS NO_x emissions, surface NO₂ averaged over all
- 923 AirKorea sites, and tropospheric NO₂ VCDs from OMI, TROPOMI, and GEMS (sampled at OMI
- 924 overpass time) averaged over South Korea. Statistically significant trends (p-value < 0.05) are given inset.
- 925 Lower panel (e) shows 2021–2023 seasonal mean (cold: October–March, warm: April–September)
- 926 diurnal variations of AirKorea surface NO₂ concentrations and GEMS VCDs in the SMA.

Figure 5. Annual mean NMVOC distributions and trends in South Korea. Top panels (a–b) show
 2021 anthropogenic VOCs (AVOCs) emissions from CAPSS and biogenic VOCs (BVOCs: sum of
 isoprene, monoterpenes, sesquiterpenes, acetaldehyde, acetone, methanol, ethanol) emissions from
 MEGAN, and (c) 2023 average AirKorea surface BTEX (≡ benzene + toluene + ethylbenzene + xylenes)

- 933 concentrations. Middle panels (d-f) show spatial distributions of 2023 average GEMS glyoxal
- 934 (CHOCHO) VCDs, formaldehyde (HCHO) VCDs, and glyoxal to formaldehyde ratio R_{GF} (=
- 935 VCD_{CHOCHO}/VCD_{HCHO}) mapped on $0.1^{\circ} \times 0.1^{\circ}$ grids. Lower panel (g) shows 2015–2023 trends in CAPSS
- AVOCs emissions, surface BTEX averaged over available AirKorea sites, and CHOCHO and HCHO
- VCDs from OMI, TROPOMI, and GEMS (sampled at OMI overpass time) averaged over South Korea.
- None of the data show significant trends over the 2015–2023 period.
- 939 940

Figure 6. Diurnal variations of HCHO and CHOCHO VCDs in the SMA. Upper panel (a) shows
seasonal mean (blue: October–March, red: April–September) diurnal variations of HCHO VCDs from
GEMS 2021–2023 observations and KORUS-AQ (May–June 2016) DC-8 aircraft observations below 8
km altitude over the SMA. Lower panel (b) shows the same for CHOCHO VCDs.

- 946
- 947

948

949 **Figure 7. O₃ distribution, trend, and sensitivity to precursors in South Korea.** Values are shown for

the 90th percentile maximum 8-hour daily average (MDA8) at individual AirKorea sites. Top panels show
 averages of 90th percentile MDA8 O₃ for 2015–2023 as (a) monthly variations in individual years and (b)

952 long-term trends in May–June (when concentrations are highest) for sites in different sensitivity regimes

953 inferred from 2023 GEMS observations. Statistically significant trends (p-value < 0.05) are given inset.

Solution 2014 Lower left panel (c) shows May–June average timeseries of formaldehyde to NO₂ ratios R_{FN} (=

955 VCD_{HCHO}/VCD_{NO2}) from OMI, TROPOMI, and GEMS (sampled at OMI overpass time). Lower right

 $956 \qquad \text{panels show spatial distributions of May-June 2023 average (d) AirKorea 90^{th} percentile MDA8 O_3 and$

957 (e) O₃ sensitivity regimes inferred from GEMS R_{FN} mapped on a $0.1^{\circ} \times 0.1^{\circ}$ grid. O₃ sensitivity regimes

958 are based on R_{FN} thresholds from Duncan et al. (2010).

962GOCI (GOCI; 2015–2020, GOCI-II; 2021–2023) AOD. AOD is mapped on a $0.1^{\circ} \times 0.1^{\circ}$ grid. Middle963panel (d) shows 2015–2023 trends in PM10 and PM25 averaged over all AirKorea sites, and GOCI AOD964averaged over South Korea. Statistically significant trends (*p*-value < 0.05) are given inset. Lower panel</td>965(e) shows 2015–2023 seasonal mean (cold: October–March, warm: April–September) diurnal variations966of AirKorea PM25 concentrations and GOCI AOD over South Korea.

967

Figure 9. Annual mean NH₃ distributions, trends, and PM_{2.5} nitrate (NO₃⁻) sensitivity in South

Korea. Top panels show spatial distributions of (a) 2021 anthropogenic NH₃ emissions from CAPSS, (b)

2023 average IASI NH₃ VCDs, and (c) 2023 cold season (October–March) NO₃⁻ sensitivity regimes

971 inferred from IASI NH₃ and GEMS NO₂. VCDs are mapped on a $0.1^{\circ} \times 0.1^{\circ}$ grid. Lower panel (d) shows

972 2015–2023 trends in CAPSS NH₃ emissions and IASI NH₃ VCDs averaged over South Korea.

973 Statistically significant trends (p-value < 0.05) are given inset. Lower right panel (e) shows the cold

974 season NO₃⁻ sensitivity trends averaged over South Korea and over the SMA. NO₃⁻ sensitivity regimes

are based on winter thresholds from Dang et al. (2024).